项目名称: DLC-离子液体复合薄膜的微/纳织构化构筑及其抗粘减摩协同效应研究

项目编号: No.51202263

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 赵文杰

作者单位: 中国科学院宁波材料技术与工程研究所

项目金额: 25万元

中文摘要: DLC薄膜具有高硬度、低摩擦系数和强耐磨性等优点而成为薄膜领域研究的热点。离子液体具有优异的抗磨减摩性能,性能优于传统润滑材料如PFPE和X-1P。在材料表面构筑微/纳织构可以起到改变界面润湿性、摩擦副之间的接触面积及捕获磨损粒子而减小犁沟的作用从而改善材料的摩擦学性能。本项目针对因界面粘着、摩擦和磨损现象制约M/NEMS系统可靠性和稳定性的关键问题,提出以DLC薄膜和离子液体为研究对象,以织构化和复合化为导向,将硬膜和软膜有机结合起来,设计和构筑具有优异抗粘减摩性能的DLC-离子液体复合薄膜。重点考察几何参数(包括织构形状、高度、深度、宽度、粗糙度和表面覆盖率)和表面化学修饰(离子液体薄膜组分和分布)对DLC薄膜表面结构、物化性能和抗粘减摩性能的影响规律,探讨微/纳织构和离子液体薄膜对DLC表面的协同抗粘减摩机制,提出一个改善表面微/纳摩擦学行为的织构化、复合化薄膜设计和制备的新途径。

中文关键词: 类金刚石薄膜;离子液体;微/纳织构;微/纳摩擦学;微/纳机电系统

英文摘要: Diamond-like carbon (DLC) films with high hardness, low friction coefficient and good wear resisitance have aroused particular interest as protective film. Ionic liquids (ILs) display better tribological properties than that of conventional lubricants,such as PFPE and X-1P. Micro/nano-textures fabricated on surface would change interface weeting behavior, ruduce real contact area between sliding pairs, trap wear particles and act as reserviors for lubricants so as to improve the tribological performances of materials. In order to solve the key factors including adhesion, friction and wear phenomenon which influence significantly the reability and stability of M/NEMS, taking advantage of surface texture and chemical modification, combined with hard and soft films, the DLC-IL composite films with micro/nano-structures which show superior anti-adhesion and friction reduction behaviors will be designed and fabricated. The effects of geometrical parameters (including texture shape, height, depth, width, surface roughness and fractional surface coverage) and chemical modification (surface chemistry and distribution) on the structure, physicochemical and nanotribological properties of DLC films will be systemically investigated. The corresponding synergetic anti-adhesion and friction reduction mechanisms of surface tex

英文关键词: DLC;IL;micro/nano-texture;micro/nano-tribology;M/NEMS

成为VIP会员查看完整内容
0

相关内容

时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
113+阅读 · 2021年8月8日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
95+阅读 · 2021年3月25日
专知会员服务
114+阅读 · 2020年8月22日
专知会员服务
28+阅读 · 2020年8月8日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
15+阅读 · 2020年2月6日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
16+阅读 · 2018年4月2日
小贴士
相关VIP内容
时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
113+阅读 · 2021年8月8日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
95+阅读 · 2021年3月25日
专知会员服务
114+阅读 · 2020年8月22日
专知会员服务
28+阅读 · 2020年8月8日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
15+阅读 · 2020年2月6日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
16+阅读 · 2018年4月2日
微信扫码咨询专知VIP会员