项目名称: 光晶格中自旋轨道耦合超冷气体及腔与里德堡原子耦合体系量子多体物理研究

项目编号: No.11474205

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 纪安春

作者单位: 首都师范大学

项目金额: 70万元

中文摘要: 本项目探索冷原子自旋轨道耦合光晶格和里德堡晶格体系的新奇物质态和量子多体问题。光晶格中超冷原子可以用来模拟复杂的物理系统,从而有效地揭示不同关联体系中的新奇量子效应。 特别是,这些体系可能会出现非常有趣的物理,例如量子无序的自旋液体相、弦激发和分数荷、以及具有特殊自旋构型的spin-vortex相、Skyrmion等。这些新的现象有的是凝聚态中十分重要的一些基本概念,为凝聚态提供了一些新的方式和视角来研究这些基本物理,其中有些现象本身就是固体物理中没有出现过的新物理。另外,里德堡原子最近取得了巨大的进展。里德堡激发由于具有很强的偶极相互作用,寿命很长,是操控量子信息非常有力的工具。本项目研究腔与里德堡原子耦合体系的多体关联效应,探索光子的超固体相。同时,由于实验上成功的将里德堡原子装在光晶格里,我们将对三角晶格中里德堡原子来探索弦激发和分数荷。

中文关键词: 光晶格;自旋轨道耦合;里德堡原子;新奇物质态;强关联

英文摘要: This project study the exotic quantum state and quantum many-body physics of ultracold atoms confined in optical lattices subjected to spin-orbit coupling and investigate the correlation effects of Redberg atoms coupled to a cavity.?Ultracold atoms confined in optical lattices can simulate complex physics system, and reveal exotic effects in different correlation system. Especially, there may appear interesting physics, such as spin-liqiud, string excitation, and fractionalized charge, spin-vortex, skyrmion, etc. These new phenomena are the basic concepts in solid state physics, and some of them have never been predicted in condensed matter physics. In addition, Redberg atoms achieve great advances recently. Due to the strong dipole-dipole interaction and longtime excitation, they have become the ideal tool for implementing quantum information. This project investigate the correlation effects of Redberg atoms coupled to a cavity, and explore the superfluid photonic phase. At the same time, Redberg atoms have been successfully loaded into optical lattices, which offer a new opportunity to study the string excitation and fractionalized charge in triangle Redberg atoms lattice.

英文关键词: optical lattice;spin-orbit coupling;Redberg atom;exotic state;strongly correlation

成为VIP会员查看完整内容
1

相关内容

专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
208+阅读 · 2021年8月2日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员