项目名称: 飞秒矢量光场的超衍射极限微结构制备及特性研究

项目编号: No.11274183

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 涂成厚

作者单位: 南开大学

项目金额: 90万元

中文摘要: 矢量光场新颖的偏振特性在紧聚焦条件下能导致远场超衍射极限聚焦光斑,从而在超衍射极限微纳加工领域有着巨大的应用潜力。众所周知,光与人工微结构材料相互作用导致的新奇光学性能可实现光的有效调控。因此具有亚波长特征的微纳结构的成功制备,将对光场调控研究提供一条重要途径。本项目围绕飞秒矢量光场微纳加工及制作的微纳结构与光场相互作用展开,研究其中的新效应、新现象并探索其物理机理。充分利用矢量光场的超衍射极限聚焦特性进行微纳加工,通过调控飞秒矢量光场的空间偏振分布实现微纳结构的图案可控;基于制作的微纳结构,开展矢量光场与其相互作用的理论和实验研究,建立亚波长尺度下矢量光场与微纳结构相互作用的理论描述,阐明其中与非傍轴近似相关的电磁学特性,研究轨道角动量、自旋角动量及纵向场等新颖特性,探索矢量光场与微结构相互作用中的新物理机制;开拓飞秒矢量光场在微纳加工及光场调控中的新应用,具有重要的研究意义和应用价值。

中文关键词: 飞秒矢量光场;阵列;超衍射极限;紧聚焦;焦场调控

英文摘要: The novel polarization property of vector optical field can result in the far-field beyond-diffraction-limit spot under tight focusing condition, therefore it has huge potential applications in micro-& nano-fabrications. It is well know that effective optical manipulation can be realized by the novelty optical properties resulted from the interaction between the the optical filed and artificial microstructure materials. Hence the successful fabrication of the sub-wavelength microstructures provides an important approach for optical manipulations. In this project, we mainly focus on the micro- & nano-fabricaitons based on femtosecond vector optical fields and then their applications in optical manipulations, revealing the underlying novel effects, phenomena and exploring their novel physics mechanisms. To fulfil these tasks, we will carry out micro & nano-fabricaitons by means of the beyond-diffraction-limit focusing of femtosecond vector optical field, and realize controllable patterns of the fabricated micro-& nanostructures. Based on the fabricated micro- & nanostructures, we will theoretically and experimentally study how they interact with vector beams. The purpose is to establish a theoretical description for the interactions within the subwavelength scale, and to clarify the electromagnetics properties re

英文关键词: femtosecond vector optical field;patterned; beyond diffraction-limit;tightly focusing;focal field manipulation

成为VIP会员查看完整内容
0

相关内容

WWW2022 | 迷途知返:分布迁移下的图神经网络自训练方法
专知会员服务
16+阅读 · 2022年2月19日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
14+阅读 · 2021年8月2日
专知会员服务
19+阅读 · 2021年5月1日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
专知会员服务
38+阅读 · 2021年2月8日
专知会员服务
17+阅读 · 2020年12月23日
【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
AI从底物和酶的结构中预测米氏常数,量化酶活性
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Summarization with Graphical Elements
Arxiv
0+阅读 · 2022年4月15日
Arxiv
64+阅读 · 2021年6月18日
小贴士
相关主题
相关VIP内容
WWW2022 | 迷途知返:分布迁移下的图神经网络自训练方法
专知会员服务
16+阅读 · 2022年2月19日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
14+阅读 · 2021年8月2日
专知会员服务
19+阅读 · 2021年5月1日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
专知会员服务
38+阅读 · 2021年2月8日
专知会员服务
17+阅读 · 2020年12月23日
【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员