Authoring 3D scenes is a central task for spatial computing applications. Competing visions for lowering existing barriers are (1) focus on immersive, direct manipulation of 3D content or (2) leverage AI techniques that capture real scenes (3D Radiance Fields such as, NeRFs, 3D Gaussian Splatting) and modify them at a higher level of abstraction, at the cost of high latency. We unify the complementary strengths of these approaches and investigate how to integrate generative AI advances into real-time, immersive 3D Radiance Field editing. We introduce Dreamcrafter, a VR-based 3D scene editing system that: (1) provides a modular architecture to integrate generative AI algorithms; (2) combines different levels of control for creating objects, including natural language and direct manipulation; and (3) introduces proxy representations that support interaction during high-latency operations. We contribute empirical findings on control preferences and discuss how generative AI interfaces beyond text input enhance creativity in scene editing and world building.


翻译:三维场景创作是空间计算应用的核心任务。当前降低创作门槛的两种竞争性技术路径分别是:(1)专注于三维内容的沉浸式直接操控;(2)利用人工智能技术捕获真实场景(如NeRF、3D高斯泼溅等三维辐射场技术)并在更高抽象层级进行修改,但需承受高延迟代价。本研究融合了这两种方法的互补优势,探索如何将生成式人工智能的最新进展整合到实时沉浸式三维辐射场编辑中。我们提出Dreamcrafter——基于虚拟现实的三维场景编辑系统,该系统具有以下特征:(1)提供模块化架构以集成生成式AI算法;(2)融合自然语言与直接操控等多层级对象创建控制方式;(3)引入代理表征机制以支持高延迟操作期间的交互。我们通过实证研究揭示了用户对控制方式的偏好,并论证了超越文本输入的生成式AI界面如何增强场景编辑与虚拟世界构建的创造性。

0
下载
关闭预览

相关内容

【NeurIPS2025】迈向开放世界的三维“物体性”学习
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员