Large language models (LLMs) have great potential to enhance productivity in many disciplines, such as software engineering. However, it is unclear to what extent they can assist in the design process of electronic circuits. This paper focuses on the application of LLMs to switched-mode power supply (SMPS) design for printed circuit boards (PCBs). We present multiple LLM-based workflows that combine reasoning, retrieval-augmented generation (RAG), and a custom toolkit that enables the LLM to interact with SPICE simulations to estimate the impact of circuit modifications. Two benchmark experiments are presented to analyze the performance of LLM-based assistants for different design tasks, including parameter tuning, topology adaption and optimization of SMPS circuits. Experiment results show that SPICE simulation feedback and current LLM advancements, such as reasoning, significantly increase the solve rate on 269 manually created benchmark tasks from 15% to 91%. Furthermore, our analysis reveals that most parameter tuning design tasks can be solved, while limits remain for certain topology adaption tasks. Our experiments offer insights for improving current concepts, for example by adapting text-based circuit representations


翻译:大语言模型(LLMs)在提升诸多领域(如软件工程)的生产力方面具有巨大潜力。然而,其在电子电路设计过程中的辅助能力尚不明确。本文聚焦于将LLMs应用于印刷电路板(PCB)的开关电源(SMPS)设计。我们提出了多种基于LLM的工作流程,这些流程结合了推理、检索增强生成(RAG)以及一个定制工具包,该工具包使LLM能够与SPICE仿真交互,以评估电路修改的影响。我们通过两个基准实验来分析基于LLM的助手在不同设计任务(包括参数调谐、拓扑结构适配以及SMPS电路优化)中的性能。实验结果表明,SPICE仿真反馈以及当前LLM的进展(如推理能力)将269项手动创建的基准任务的解决率从15%显著提升至91%。此外,我们的分析表明,大多数参数调谐设计任务可以得到解决,但在某些拓扑结构适配任务上仍存在局限。我们的实验为改进当前概念(例如通过调整基于文本的电路表示方法)提供了见解。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
Top
微信扫码咨询专知VIP会员