The presence of outliers in Large Language Models (LLMs) weights and activations makes them difficult to quantize. Recent work has leveraged rotations to mitigate these outliers. In this work, we propose methods that learn fusible rotations by minimizing principled and cheap proxy objectives to the weight quantization error. We primarily focus on GPTQ as the quantization method. Our main method is OptRot, which reduces weight outliers simply by minimizing the element-wise fourth power of the rotated weights. We show that OptRot outperforms both Hadamard rotations and more expensive, data-dependent methods like SpinQuant and OSTQuant for weight quantization. It also improves activation quantization in the W4A8 setting. We also propose a data-dependent method, OptRot$^{+}$, that further improves performance by incorporating information on the activation covariance. In the W4A4 setting, we see that both OptRot and OptRot$^{+}$ perform worse, highlighting a trade-off between weight and activation quantization.


翻译:大型语言模型(LLMs)权重和激活中存在的异常值使其难以量化。近期研究利用旋转操作来缓解这些异常值。本文提出通过学习可融合旋转的方法,通过最小化权重量化误差的合理且廉价的代理目标来实现。我们主要关注GPTQ作为量化方法。我们的主要方法是OptRot,它通过最小化旋转后权重的逐元素四次方来减少权重异常值。我们证明,在权重量化方面,OptRot优于哈达玛旋转以及更昂贵、数据依赖的方法(如SpinQuant和OSTQuant)。在W4A8设置下,它还能改善激活量化。我们还提出了一种数据依赖方法OptRot$^{+}$,通过结合激活协方差信息进一步提升性能。在W4A4设置下,我们发现OptRot和OptRot$^{+}$的表现均有所下降,这凸显了权重量化与激活量化之间的权衡关系。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员