End-to-end deep learning approaches has been proven to be efficient in autonomous driving and robotics. By using deep learning techniques for decision-making, those systems are often referred to as a black box, and the result is driven by data. In this paper, we propose PaaS (Planning as a Service), a vanilla module to generate local trajectory planning for autonomous driving in CARLA simulation. Our method is submitted in International CARLA Autonomous Driving Leaderboard (CADL), which is a platform to evaluate the driving proficiency of autonomous agents in realistic traffic scenarios. Our approach focuses on reactive planning in Frenet frame under complex urban street's constraints and driver's comfort. The planner generates a collection of feasible trajectories, leveraging heuristic cost functions with controllable driving style factor to choose the optimal-control path that satisfies safe travelling criteria. PaaS can provide sufficient solutions to handle well under challenging traffic situations in CADL. As the strict evaluation in CADL Map Track, our approach ranked 3rd out of 9 submissions regarding the measure of driving score. However, with the focus on minimizing the risk of maneuver and ensuring passenger safety, our figures corresponding to infraction penalty dominate the two leading submissions for 20%.


翻译:深度学习端到端方法在自主驾驶和机器人领域已被证明是有效的。使用深度学习技术进行决策,这些系统通常被称为黑匣子,结果是由数据驱动的。在本文中,我们提出了PaaS(Planning as a Service),这是一个用于在CARLA仿真中进行自主驾驶的vanilla模块,用于生成本地轨迹规划。我们的方法已提交至国际CARLA自主驾驶排行榜(CADL),该平台用于评估自主代理在逼真的交通场景中的驾驶熟练程度。我们的方法侧重于Frenet坐标系下的反应式规划,考虑到复杂城市街道的约束和驾驶舒适性。规划程序生成一系列可行轨迹,利用启发式成本函数和可控驾驶风格因素选择满足安全行驶标准的最优控制路径。PaaS可以提供足够的解决方案,在CADL中处理具有挑战性的交通情况。在CADL地图赛道的严格评估下,我们的方法的驾驶得分排名第三。然而,我们注重最小化操作风险并确保乘客安全,我们的违规惩罚指标优于领先的两项提交大约 20%。

0
下载
关闭预览

相关内容

PaaS是Platform-as-a-Service的缩写,意思是平台即服务。 把服务器平台作为一种服务提供的商业模式。 通过网络进行程序提供的服务称之为SaaS(Software as a Service),而云计算时代相应的服务器平台或者开发环境作为服务进行提供就成为了PaaS(Platform as a Service)。
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
DAI2020 SMARTS 自动驾驶挑战赛(深度强化学习)
深度强化学习实验室
15+阅读 · 2020年8月15日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
16+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
国家自然科学基金
8+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
12+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2021年6月25日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
DAI2020 SMARTS 自动驾驶挑战赛(深度强化学习)
深度强化学习实验室
15+阅读 · 2020年8月15日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
16+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
相关基金
国家自然科学基金
8+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
12+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员