Engineering complex systems (aircraft, buildings, vehicles) requires accounting for geometric and performance couplings across subsystems. As generative models proliferate for specialized domains (wings, structures, engines), a key research gap is how to coordinate frozen, pre-trained submodels to generate full-system designs that are feasible, diverse, and high-performing. We introduce Generative Latent Unification of Expertise-Informed Engineering Models (GLUE), which orchestrates pre-trained, frozen subsystem generators while enforcing system-level feasibility, optimality, and diversity. We propose and benchmark (i) data-driven GLUE models trained on pre-generated system-level designs and (ii) a data-free GLUE model trained online on a differentiable geometry layer. On a UAV design problem with five coupling constraints, we find that data-driven approaches yield diverse, high-performing designs but require large datasets to satisfy constraints reliably. The data-free approach is competitive with Bayesian optimization and gradient-based optimization in performance and feasibility while training a full generative model in only 10 min on a RTX 4090 GPU, requiring more than two orders of magnitude fewer geometry evaluations and FLOPs than the data-driven method. Ablations focused on data-free training show that subsystem output continuity affects coordination, and equality constraints can trigger mode collapse unless mitigated. By integrating unmodified, domain-informed submodels into a modular generative workflow, this work provides a viable path for scaling generative design to complex, real-world engineering systems.


翻译:复杂工程系统(如飞机、建筑、车辆)的设计需考虑跨子系统的几何与性能耦合。随着面向特定领域(如机翼、结构、发动机)的生成模型日益增多,一个关键的研究空白在于如何协调冻结的预训练子模型,以生成可行、多样且高性能的全系统设计。本文提出专家知识工程模型的生成式潜在统一框架,该框架在协调预训练冻结子系统生成器的同时,强制执行系统层级的可行性、最优性与多样性。我们提出并基准测试了两种方法:(i)基于预生成系统级设计数据训练的**数据驱动型GLUE模型**,以及(ii)在可微分几何层上在线训练的**无数据GLUE模型**。在一个包含五项耦合约束的无人机设计问题中,我们发现数据驱动方法能产生多样化的高性能设计,但需要大规模数据集才能可靠满足约束条件;而无数据方法在性能与可行性方面与贝叶斯优化及基于梯度的优化方法相当,同时在单块RTX 4090 GPU上仅需10分钟即可完成完整生成模型的训练,其几何评估次数与浮点运算量比数据驱动方法低两个数量级以上。针对无数据训练的消融实验表明:子系统输出的连续性会影响协调效果,而等式约束若不加以缓解可能引发模式崩溃。通过将未经修改的领域专家子模型整合至模块化生成工作流,本研究为生成式设计向复杂现实工程系统的规模化应用提供了可行路径。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 11月21日
DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【CPS】社会物理信息系统(CPSS)及其典型应用
产业智能官
16+阅读 · 2018年9月18日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员