Demonstrating quantum advantage in machine learning tasks requires navigating a complex landscape of proposed models and algorithms. To bring clarity to this search, we introduce a framework that connects the structure of parametrized quantum circuits to the mathematical nature of the functions they can actually learn. Within this framework, we show how fundamental properties, like circuit depth and non-Clifford gate count, directly determine whether a model's output leads to efficient classical simulation or surrogation. We argue that this analysis uncovers common pathways to dequantization that underlie many existing simulation methods. More importantly, it reveals critical distinctions between models that are fully simulatable, those whose function space is classically tractable, and those that remain robustly quantum. This perspective provides a conceptual map of this landscape, clarifying how different models relate to classical simulability and pointing to where opportunities for quantum advantage may lie.
翻译:在机器学习任务中证明量子优势需要在一个充满各种模型与算法的复杂领域中探索。为了明晰这一研究方向,我们提出了一个框架,将参数化量子电路的结构与其实际可学习函数的数学本质联系起来。在此框架内,我们展示了电路深度与非克利福德门数量等基本性质如何直接决定一个模型的输出是否会导致高效的经典模拟或替代。我们认为,这一分析揭示了现有许多模拟方法背后共通的去量子化路径。更重要的是,它揭示了完全可模拟的模型、函数空间在经典意义上可处理的模型以及保持强量子特性的模型之间的关键区别。这一视角为理解该领域提供了一幅概念地图,阐明了不同模型与经典可模拟性的关系,并指出了量子优势可能存在的方向。