Financial institutions face escalating challenges in identifying high-risk customer behaviors within massive transaction networks, where fraudulent activities exploit market fragmentation and institutional boundaries. We address three fundamental problems in customer risk analytics: data silos preventing holistic relationship assessment, extreme behavioral class imbalance, and suboptimal customer intervention strategies that fail to balance compliance costs with relationship value. We develop an integrated customer intelligence framework combining federated learning, relational network analysis, and adaptive targeting policies. Our federated graph neural network enables collaborative behavior modeling across competing institutions without compromising proprietary customer data, using privacy-preserving embeddings to capture cross-market relational patterns. We introduce cross-bank Personalized PageRank to identify coordinated behavioral clusters providing interpretable customer network segmentation for risk managers. A hierarchical reinforcement learning mechanism optimizes dynamic intervention targeting, calibrating escalation policies to maximize prevention value while minimizing customer friction and operational costs. Analyzing 1.4 million customer transactions across seven markets, our approach reduces false positive and false negative rates to 4.64% and 11.07%, substantially outperforming single-institution models. The framework prevents 79.25% of potential losses versus 49.41% under fixed-rule policies, with optimal market-specific targeting thresholds reflecting heterogeneous customer base characteristics. These findings demonstrate that federated customer analytics materially improve both risk management effectiveness and customer relationship outcomes in networked competitive markets.
翻译:金融机构在识别海量交易网络中的高风险客户行为方面面临日益严峻的挑战,欺诈活动常利用市场分割与机构边界进行规避。本文针对客户风险分析中的三个核心问题展开研究:阻碍整体关系评估的数据孤岛现象、极端的行为类别不平衡,以及未能平衡合规成本与关系价值的次优客户干预策略。我们开发了一个集成式客户智能框架,融合了联邦学习、关系网络分析与自适应定向策略。所提出的联邦图神经网络支持竞争机构间在不泄露客户专有数据的前提下进行协同行为建模,通过隐私保护嵌入捕捉跨市场关系模式。我们引入跨银行个性化PageRank算法以识别协同行为集群,为风险管理者提供可解释的客户网络分割方案。分层强化学习机制优化动态干预定向策略,通过校准升级策略在最大化预防价值的同时,最小化客户摩擦与运营成本。基于对七个市场140万笔客户交易的分析,本方法将误报率与漏报率分别降至4.64%和11.07%,显著优于单机构模型。该框架可预防79.25%的潜在损失,而固定规则策略仅能预防49.41%,且针对不同市场的最优定向阈值反映了客户群体的异质性特征。研究结果表明,在网络化竞争市场中,联邦客户分析能实质性提升风险管理效能并改善客户关系结果。