A global shortage of radiologists has been exacerbated by the significant volume of chest X-ray workloads, particularly in primary care. Although multimodal large language models show promise, existing evaluations predominantly rely on automated metrics or retrospective analyses, lacking rigorous prospective clinical validation. Janus-Pro-CXR (1B), a chest X-ray interpretation system based on DeepSeek Janus-Pro model, was developed and rigorously validated through a multicenter prospective trial (NCT07117266). Our system outperforms state-of-the-art X-ray report generation models in automated report generation, surpassing even larger-scale models including ChatGPT 4o (200B parameters), while demonstrating reliable detection of six clinically critical radiographic findings. Retrospective evaluation confirms significantly higher report accuracy than Janus-Pro and ChatGPT 4o. In prospective clinical deployment, AI assistance significantly improved report quality scores, reduced interpretation time by 18.3% (P < 0.001), and was preferred by a majority of experts in 54.3% of cases. Through lightweight architecture and domain-specific optimization, Janus-Pro-CXR improves diagnostic reliability and workflow efficiency, particularly in resource-constrained settings. The model architecture and implementation framework will be open-sourced to facilitate the clinical translation of AI-assisted radiology solutions.


翻译:全球放射科医生短缺问题因胸部X光检查工作量巨大而加剧,在初级诊疗环境中尤为突出。尽管多模态大语言模型展现出潜力,但现有评估主要依赖自动化指标或回顾性分析,缺乏严格的前瞻性临床验证。本研究基于DeepSeek Janus-Pro模型开发了胸片判读系统Janus-Pro-CXR(1B参数),并通过多中心前瞻性试验(NCT07117266)进行了严格验证。本系统在自动报告生成方面优于当前最先进的X光报告生成模型,其性能甚至超越了包括ChatGPT 4o(2000亿参数)在内的更大规模模型,同时能可靠检测六种临床关键影像学征象。回顾性评估证实其报告准确率显著高于Janus-Pro和ChatGPT 4o。在前瞻性临床部署中,AI辅助显著提升了报告质量评分,将判读时间缩短18.3%(P < 0.001),并在54.3%的病例中获得多数专家优先选择。通过轻量化架构和领域专用优化,Janus-Pro-CXR提升了诊断可靠性和工作流效率,在资源受限环境中表现尤为突出。模型架构与实施框架将开源发布,以促进AI辅助放射学解决方案的临床转化。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员