Terrain-following coordinates in atmospheric models often imprint their grid structure onto the solution, particularly over steep topography, where distorted coordinate layers can generate spurious horizontal and vertical motion. Standard formulations, such as hybrid or SLEVE coordinates, mitigate these errors by using analytic decay functions controlled by heuristic scale parameters that are typically tuned by hand and fixed a priori. In this work, we propose a framework to define a parametric vertical coordinate system as a learnable component within a differentiable dynamical core. We develop an end-to-end differentiable numerical solver for the two-dimensional non-hydrostatic Euler equations on an Arakawa C-grid, and introduce a NEUral Vertical Enhancement (NEUVE) terrain-following coordinate based on an integral transformed neural network that guarantees monotonicity. A key feature of our approach is the use of automatic differentiation to compute exact geometric metric terms, thereby eliminating truncation errors associated with finite-difference coordinate derivatives. By coupling simulation errors through the time integration to the parameterization, our formulation finds a grid structure optimized for both the underlying physics and numerics. Using several standard tests, we demonstrate that these learned coordinates reduce the mean squared error by a factor of 1.4 to 2 in non-linear statistical benchmarks, and eliminate spurious vertical velocity striations over steep topography.
翻译:大气模式中的地形追随坐标常将其网格结构烙印于解中,尤其在陡峭地形区域,扭曲的坐标层可能产生虚假的水平与垂直运动。标准方案(如混合坐标或SLEVE坐标)通过采用由启发式尺度参数控制的解析衰减函数来缓解此类误差,这些参数通常需人工调优并先验固定。本研究提出一种框架,将参数化垂直坐标系定义为可微分动力核心内的可学习组件。我们开发了一个端到端可微分的二维非静力欧拉方程数值求解器(基于Arakawa C网格),并引入一种基于积分变换神经网络的神经垂直增强地形追随坐标,该网络保证单调性。本方法的核心特点是利用自动微分精确计算几何度量项,从而消除有限差分坐标导数带来的截断误差。通过将时间积分过程中的模拟误差与参数化方案耦合,我们的框架可找到同时优化基础物理过程与数值特性的网格结构。通过多项标准测试验证,学习得到的坐标在非线性统计基准中将均方误差降低至原值的1/4至1/2,并消除了陡峭地形上虚假的垂直速度条纹。