Laser scanning has proven to be an invaluable tool in assessing the decomposition of forest environments. Mobile laser scanning (MLS) has shown to be highly promising for extremely accurate, tree level inventory. In this study, we present NormalView, a sensor-agnostic projection-based deep learning method for classifying tree species from point cloud data. NormalView embeds local geometric information into two-dimensional projections, in the form of normal vector estimates, and uses the projections as inputs to an image classification network, YOLOv11. In addition, we inspected the effect of multispectral radiometric intensity information on classification performance. We trained and tested our model on high-density MLS data (7 species, ~5000 pts/m^2), as well as high-density airborne laser scanning (ALS) data (9 species, >1000 pts/m^2). On the MLS data, NormalView achieves an overall accuracy (macro-average accuracy) of 95.5 % (94.8 %), and 91.8 % (79.1 %) on the ALS data. We found that having intensity information from multiple scanners provides benefits in tree species classification, and the best model on the multispectral ALS dataset was a model using intensity information from all three channels of the multispectral ALS. This study demonstrates that projection-based methods, when enhanced with geometric information and coupled with state-of-the-art image classification backbones, can achieve exceptional results. Crucially, these methods are sensor-agnostic, relying only on geometric information. Additionally, we publically release the MLS dataset used in the study.


翻译:激光扫描技术已被证明是评估森林环境解构的宝贵工具。移动激光扫描(MLS)在实现极高精度的单木级资源清查方面展现出巨大潜力。本研究提出NormalView,一种基于投影的传感器无关深度学习方法,用于从点云数据中分类树种。NormalView将局部几何信息以法向量估计的形式嵌入二维投影,并将投影作为图像分类网络YOLOv11的输入。此外,我们探究了多光谱辐射强度信息对分类性能的影响。我们在高密度MLS数据(7个树种,约5000点/平方米)以及高密度机载激光扫描(ALS)数据(9个树种,>1000点/平方米)上训练并测试了模型。在MLS数据上,NormalView的总体准确率(宏平均准确率)达到95.5%(94.8%),在ALS数据上达到91.8%(79.1%)。研究发现,来自多台扫描仪的强度信息对树种分类有益,多光谱ALS数据集上的最佳模型使用了全部三个通道的强度信息。本研究表明,当投影方法通过几何信息增强并与先进的图像分类骨干网络结合时,能够取得优异的结果。关键在于这些方法具有传感器无关性,仅依赖于几何信息。此外,我们公开了研究中使用的MLS数据集。

0
下载
关闭预览

相关内容

基于文本的3D视觉定位综述:要素、最新进展与未来方向
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
知识图谱KG在NLP的十年研究进展综述
专知
17+阅读 · 2022年10月4日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
深度学习图像检索(CBIR): 十年之大综述
专知
66+阅读 · 2020年12月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员