Effective earthquake risk reduction relies on accurate site-specific evaluations. This requires models that can represent the influence of local site conditions on ground motion characteristics. In this context, data driven approaches that learn site controlled signatures from recorded ground motions offer a promising direction. We address strong ground motion generation from time-domain accelerometer records and introduce the TimesNet-Gen, a time-domain conditional generator. The approach uses a station specific latent bottleneck. We evaluate generation by comparing HVSR curves and fundamental site-frequency $f_0$ distributions between real and generated records per station, and summarize station specificity with a score based on the $f_0$ distribution confusion matrices. TimesNet-Gen achieves strong station-wise alignment and compares favorably with a spectrogram-based conditional VAE baseline for site-specific strong motion synthesis. Our codes are available via https://github.com/brsylmz23/TimesNet-Gen.
翻译:有效的地震风险降低依赖于准确的场地特异性评估,这需要能够表征局部场地条件对地震动特征影响的模型。在此背景下,从记录的地震动中学习场地控制特征的数据驱动方法提供了有前景的方向。我们基于时域加速度计记录处理强震动生成问题,并提出了TimesNet-Gen——一种时域条件生成器。该方法采用站点特异性潜在瓶颈结构。我们通过比较各台站真实记录与生成记录的HVSR曲线及场地基频$f_0$分布来评估生成效果,并基于$f_0$分布混淆矩阵计算得分以量化站点特异性。TimesNet-Gen实现了优异的台站级对齐性能,在场地特异性强震动合成任务中优于基于频谱图的条件变分自编码器基线模型。代码可通过https://github.com/brsylmz23/TimesNet-Gen获取。