Graph clustering plays a crucial role in graph representation learning but often faces challenges in achieving feature-space diversity. While Deep Modularity Networks (DMoN) leverage modularity maximization and collapse regularization to ensure structural separation, they lack explicit mechanisms for feature-space separation, assignment dispersion, and assignment-confidence control. We address this limitation by proposing Deep Modularity Networks with Diversity-Preserving Regularization (DMoN-DPR), which introduces three novel regularization terms: distance-based for inter-cluster separation, variance-based for per-cluster assignment dispersion, and an assignment-entropy penalty with a small positive weight, encouraging more confident assignments gradually. Our method significantly enhances label-based clustering metrics on feature-rich benchmark datasets (paired two-tailed t-test, $p\leq0.05$), demonstrating the effectiveness of incorporating diversity-preserving regularizations in creating meaningful and interpretable clusters.


翻译:图聚类在图表示学习中起着关键作用,但在实现特征空间多样性方面常面临挑战。尽管深度模块化网络(DMoN)利用模块度最大化和坍缩正则化来确保结构分离,但其缺乏针对特征空间分离、分配分散性以及分配置信度控制的显式机制。为解决这一局限,我们提出了具有多样性保持正则化的深度模块化网络(DMoN-DPR),该方法引入了三种新颖的正则化项:基于距离的簇间分离项、基于方差的簇内分配分散项,以及一个带小正权重的分配熵惩罚项,以逐步鼓励更确信的分配。我们的方法在特征丰富的基准数据集上显著提升了基于标签的聚类指标(配对双尾t检验,$p\leq0.05$),证明了融入多样性保持正则化对于生成有意义且可解释聚类簇的有效性。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员