Brain-inspired spiking neural networks (SNNs) are recognized as a promising avenue for achieving efficient, low-energy neuromorphic computing. Direct training of SNNs typically relies on surrogate gradient (SG) learning to estimate derivatives of non-differentiable spiking activity. However, during training, the distribution of neuronal membrane potentials varies across timesteps and progressively deviates toward both sides of the firing threshold. When the firing threshold and SG remain fixed, this may lead to imbalanced spike firing and diminished gradient signals, preventing SNNs from performing well. To address these issues, we propose a novel dual-stage synergistic learning algorithm that achieves forward adaptive thresholding and backward dynamic SG. In forward propagation, we adaptively adjust thresholds based on the distribution of membrane potential dynamics (MPD) at each timestep, which enriches neuronal diversity and effectively balances firing rates across timesteps and layers. In backward propagation, drawing from the underlying association between MPD, threshold, and SG, we dynamically optimize SG to enhance gradient estimation through spatio-temporal alignment, effectively mitigating gradient information loss. Experimental results demonstrate that our method achieves significant performance improvements. Moreover, it allows neurons to fire stable proportions of spikes at each timestep and increases the proportion of neurons that obtain gradients in deeper layers.


翻译:受大脑启发的脉冲神经网络(SNNs)被认为是实现高效、低能耗神经形态计算的一条有前景的途径。SNNs的直接训练通常依赖于替代梯度(SG)学习来估计不可微脉冲活动的导数。然而,在训练过程中,神经元膜电位的分布随时间步变化,并逐渐向发放阈值的两侧偏离。当发放阈值和SG保持固定时,这可能导致脉冲发放不平衡和梯度信号减弱,阻碍SNNs取得良好性能。为解决这些问题,我们提出了一种新颖的双阶段协同学习算法,实现了前向自适应阈值调整和后向动态SG。在前向传播中,我们根据每个时间步膜电位动态(MPD)的分布自适应调整阈值,这丰富了神经元多样性,并有效平衡了跨时间步和跨层的发放率。在后向传播中,基于MPD、阈值和SG之间的内在关联,我们通过时空对齐动态优化SG以增强梯度估计,有效缓解了梯度信息损失。实验结果表明,我们的方法实现了显著的性能提升。此外,它使得神经元在每个时间步能发放稳定比例的脉冲,并增加了在更深层中获得梯度的神经元比例。

0
下载
关闭预览

相关内容

【NeurIPS2023】图神经网络的对抗性鲁棒性:哈密顿方法
专知会员服务
22+阅读 · 2023年10月11日
专知会员服务
41+阅读 · 2021年6月19日
【NeurIPS 2020】核基渐进蒸馏加法器神经网络
专知
13+阅读 · 2020年10月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
Top
微信扫码咨询专知VIP会员