We introduce a novel framework for decentralized projection-free optimization, extending projection-free methods to a broader class of upper-linearizable functions. Our approach leverages decentralized optimization techniques with the flexibility of upper-linearizable function frameworks, effectively generalizing traditional DR-submodular function optimization. We obtain the regret of $O(T^{1-θ/2})$ with communication complexity of $O(T^θ)$ and number of linear optimization oracle calls of $O(T^{2θ})$ for decentralized upper-linearizable function optimization, for any $0\le θ\le 1$. This approach allows for the first results for monotone up-concave optimization with general convex constraints and non-monotone up-concave optimization with general convex constraints. Further, the above results for first order feedback are extended to zeroth order, semi-bandit, and bandit feedback.


翻译:我们提出了一种新颖的去中心化无投影优化框架,将无投影方法扩展至更广泛的上线性化函数类别。该方法结合了去中心化优化技术与上线性化函数框架的灵活性,有效推广了传统的DR-子模函数优化。对于任意0≤θ≤1,我们在去中心化上线性化函数优化中实现了$O(T^{1-θ/2})$的遗憾界,通信复杂度为$O(T^θ)$,线性优化预言机调用次数为$O(T^{2θ})$。该框架首次实现了具有一般凸约束的单调上凹优化及非单调上凹优化的理论结果。此外,上述一阶反馈结果可进一步扩展至零阶、半赌博机及赌博机反馈场景。

0
下载
关闭预览

相关内容

专知会员服务
12+阅读 · 2021年6月20日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员