Gaussian mixture models (GMMs) are fundamental statistical tools for modeling heterogeneous data. Due to the nonconcavity of the likelihood function, the Expectation-Maximization (EM) algorithm is widely used for parameter estimation of each Gaussian component. Existing analyses of the EM algorithm's convergence to the true parameter focus on either the two-component case or multi-component settings with known mixing probabilities and isotropic covariance matrices. In this work, we study the convergence of the EM algorithm for multi-component GMMs in full generality. The population-level EM is shown to converge to the true parameter when the smallest separation among all pairs of Gaussian components exceeds a logarithmic factor of the largest separation and the reciprocal of the minimal mixing probabilities. At the sample level, the EM algorithm is shown to be minimax rate-optimal, up to a logarithmic factor. We develop two distinct novel analytical approaches, each tailored to a different regime of separation, reflecting two complementary perspectives on the use of EM. As a byproduct of our analysis, we show that the EM algorithm, when used for community detection, also achieves the minimax optimal rate of misclustering error under milder separation conditions than spectral clustering and Lloyd's algorithm, an interesting result in its own right. Our analysis allows the number of components, the minimal mixing probabilities, the separation between Gaussian components and the dimension to grow with the sample size. Simulation studies corroborate our theoretical findings.


翻译:高斯混合模型(GMMs)是建模异质性数据的基础统计工具。由于似然函数的非凹性,期望最大化(EM)算法被广泛用于估计各高斯组分的参数。现有关于EM算法收敛至真实参数的分析主要集中于双组分情形,或已知混合概率及各向同性协方差矩阵的多组分设定。本研究全面探讨了多组分GMMs中EM算法的收敛性。研究表明,当所有高斯组分对之间的最小分离度超过最大分离度的对数因子与最小混合概率倒数的乘积时,总体层面的EM算法将收敛至真实参数。在样本层面,EM算法被证明在达到对数因子范围内具有极小极大速率最优性。我们提出了两种新颖的分析方法,分别针对不同的分离度区间,反映了使用EM算法的两种互补视角。作为分析的副产品,我们证明当EM算法用于社区检测时,在比谱聚类和Lloyd算法更宽松的分离条件下,也能达到误聚类误差的极小极大最优速率,这一结果本身具有重要意义。我们的分析允许组分数量、最小混合概率、高斯组分间分离度及维度随样本量增长而变化。仿真研究验证了我们的理论发现。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员