In this paper, we leverage the rapid advances in imitation learning, a topic of intense recent focus in the Reinforcement Learning (RL) literature, to develop new sample complexity results and performance guarantees for data-driven Model Predictive Control (MPC) for constrained linear systems. In its simplest form, imitation learning is an approach that tries to learn an expert policy by querying samples from an expert. Recent approaches to data-driven MPC have used the simplest form of imitation learning known as behavior cloning to learn controllers that mimic the performance of MPC by online sampling of the trajectories of the closed-loop MPC system. Behavior cloning, however, is a method that is known to be data inefficient and suffer from distribution shifts. As an alternative, we develop a variant of the forward training algorithm which is an on-policy imitation learning method proposed by Ross et al. (2010). Our algorithm uses the structure of constrained linear MPC, and our analysis uses the properties of the explicit MPC solution to theoretically bound the number of online MPC trajectories needed to achieve optimal performance. We validate our results through simulations and show that the forward training algorithm is indeed superior to behavior cloning when applied to MPC.


翻译:在本文中,我们利用模仿学习的快速进展,这是加强学习文献中最近集中关注的一个专题,为数据驱动的受限制线性系统模型预测控制(MPC)开发新的样本复杂性结果和性能保障。在最简单的形式上,模仿学习是一种试图通过查询专家的样本来学习专家政策的方法。最近对数据驱动的MPC的做法使用被称为行为克隆的最简单形式的模仿学习形式来学习模仿MPC的操作器,通过对闭环MPC系统的轨迹进行在线抽样抽样,模仿MPC的性能。然而,行为克隆是一种已知数据效率低且分布变化影响的方法。作为一种替代办法,我们开发了前方培训算法的变式,这是罗斯等人(2010年)提出的政策模拟学习方法。我们的算法使用了受限制的线性MPC结构,我们的分析利用明确的MPC解决办法的特性从理论上将实现最佳性能所需的在线MPC轨迹的数目加以约束。我们通过模拟和演算法来验证我们的前方培训结果。我们通过模拟和演算法来显示我们实现最佳性能。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员