Modern cloud architectures demand self-adaptive capabilities to manage dynamic operational conditions. Yet, existing solutions often impose centralized control models ill-suited to microservices decentralized nature. This paper presents AdaptiFlow, a framework that leverages well-established principles of autonomous computing to provide abstraction layers focused on the Monitor and Execute phases of the MAPE-K loop. By decoupling metrics collection and action execution from adaptation logic, AdaptiFlow enables microservices to evolve into autonomous elements through standardized interfaces, preserving their architectural independence while enabling system-wide adaptability. The framework introduces: (1) Metrics Collectors for unified infrastructure/business metric gathering, (2) Adaptation Actions as declarative actuators for runtime adjustments, and (3) a lightweight Event-Driven and rule-based mechanism for adaptation logic specification. Validation through the enhanced Adaptable TeaStore benchmark demonstrates practical implementation of three adaptation scenarios targeting three levels of autonomy self-healing (database recovery), self-protection (DDoS mitigation), and self-optimization (traffic management) with minimal code modification per service. Key innovations include a workflow for service instrumentation and evidence that decentralized adaptation can emerge from localized decisions without global coordination. The work bridges autonomic computing theory with cloud-native practice, providing both a conceptual framework and concrete tools for building resilient distributed systems. Future work includes integration with formal coordination models and application of adaptation techniques relying on AI agents for proactive adaptation to address complex adaptation scenarios.
翻译:现代云架构需要具备自适应能力以应对动态运行环境。然而,现有解决方案通常采用集中式控制模型,难以契合微服务的去中心化特性。本文提出AdaptiFlow框架,该框架利用自主计算领域的成熟原理,构建专注于MAPE-K循环中监测(Monitor)与执行(Execute)阶段的抽象层。通过将指标收集与动作执行与自适应逻辑解耦,AdaptiFlow使微服务能够通过标准化接口演化为自主单元,在保持其架构独立性的同时实现系统级的自适应能力。该框架包含三个核心组件:(1)统一基础设施/业务指标收集的指标收集器;(2)作为声明式执行器实现运行时调整的自适应动作;(3)基于事件驱动与规则的自适应逻辑轻量级描述机制。通过增强型Adaptable TeaStore基准测试的验证表明,该框架可在三类自主性层级(自修复、自保护、自优化)上实现三种自适应场景(数据库恢复、DDoS缓解、流量管理),且每个服务仅需最小代码修改。关键创新包括:服务插装工作流,以及证明去中心化自适应可通过局部决策实现而无需全局协调。本工作架起了自主计算理论与云原生实践之间的桥梁,为构建弹性分布式系统提供了概念框架与具体工具。未来工作包括与形式化协调模型的集成,以及应用基于AI智能体的自适应技术以实现面向复杂场景的主动适应。