To address the computational issue in empirical likelihood methods with massive data, this paper proposes a grouped empirical likelihood (GEL) method. It divides $N$ observations into $n$ groups, and assigns the same probability weight to all observations within the same group. GEL estimates the $n\ (\ll N)$ weights by maximizing the empirical likelihood ratio. The dimensionality of the optimization problem is thus reduced from $N$ to $n$, thereby lowering the computational complexity. We prove that GEL possesses the same first order asymptotic properties as the conventional empirical likelihood method under the estimating equation settings and the classical two-sample mean problem. A distributed GEL method is also proposed with several servers. Numerical simulations and real data analysis demonstrate that GEL can keep the same inferential accuracy as the conventional empirical likelihood method, and achieves substantial computational acceleration compared to the divide-and-conquer empirical likelihood method. We can analyze a billion data with GEL in tens of seconds on only one PC.


翻译:为解决大规模数据下经验似然方法的计算问题,本文提出了一种分组经验似然方法。该方法将N个观测值划分为n个组,并为同一组内的所有观测值分配相同的概率权重。GEL通过最大化经验似然比来估计n(≪ N)个权重,从而将优化问题的维度从N降低到n,显著降低了计算复杂度。我们证明,在估计方程设定和经典两样本均值问题下,GEL具有与传统经验似然方法相同的一阶渐近性质。此外,本文还提出了基于多服务器的分布式GEL方法。数值模拟和实际数据分析表明,GEL能够保持与传统经验似然方法相同的推断精度,并且相较于分治经验似然方法实现了显著的计算加速。使用GEL可在单台个人计算机上数十秒内完成十亿级数据的分析。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
专知会员服务
19+阅读 · 2021年8月15日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
20+阅读 · 2020年12月9日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
专知会员服务
19+阅读 · 2021年8月15日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
20+阅读 · 2020年12月9日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员