To address the computational issue in empirical likelihood methods with massive data, this paper proposes a grouped empirical likelihood (GEL) method. It divides $N$ observations into $n$ groups, and assigns the same probability weight to all observations within the same group. GEL estimates the $n\ (\ll N)$ weights by maximizing the empirical likelihood ratio. The dimensionality of the optimization problem is thus reduced from $N$ to $n$, thereby lowering the computational complexity. We prove that GEL possesses the same first order asymptotic properties as the conventional empirical likelihood method under the estimating equation settings and the classical two-sample mean problem. A distributed GEL method is also proposed with several servers. Numerical simulations and real data analysis demonstrate that GEL can keep the same inferential accuracy as the conventional empirical likelihood method, and achieves substantial computational acceleration compared to the divide-and-conquer empirical likelihood method. We can analyze a billion data with GEL in tens of seconds on only one PC.
翻译:为解决大规模数据下经验似然方法的计算问题,本文提出了一种分组经验似然方法。该方法将N个观测值划分为n个组,并为同一组内的所有观测值分配相同的概率权重。GEL通过最大化经验似然比来估计n(≪ N)个权重,从而将优化问题的维度从N降低到n,显著降低了计算复杂度。我们证明,在估计方程设定和经典两样本均值问题下,GEL具有与传统经验似然方法相同的一阶渐近性质。此外,本文还提出了基于多服务器的分布式GEL方法。数值模拟和实际数据分析表明,GEL能够保持与传统经验似然方法相同的推断精度,并且相较于分治经验似然方法实现了显著的计算加速。使用GEL可在单台个人计算机上数十秒内完成十亿级数据的分析。