This paper considers the problem of inference in cluster randomized experiments when cluster sizes are non-ignorable. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by non-ignorable cluster sizes we mean that "large" clusters and "small" clusters may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters of differing sizes. In order to permit this sort of flexibility, we consider a sampling framework in which cluster sizes themselves are random. In this way, our analysis departs from earlier analyses of cluster randomized experiments in which cluster sizes are treated as non-random. We distinguish between two different parameters of interest: the equally-weighted cluster-level average treatment effect, and the size-weighted cluster-level average treatment effect. For each parameter, we provide methods for inference in an asymptotic framework where the number of clusters tends to infinity and treatment is assigned using simple random sampling. We additionally permit the experimenter to sample only a subset of the units within each cluster rather than the entire cluster and demonstrate the implications of such sampling for some commonly used estimators. A small simulation study shows the practical relevance of our theoretical results.


翻译:本文考虑了在组群大小不显眼时群集随机实验中的推断问题。 这里, 通过群集随机实验, 我们指的是在组群级别上分配处理的群集随机实验; 不可忽略的群集大小意味着“ 大型” 群集和“ 小型” 群群群可能有差异, 特别是, 处理的效果可能因不同大小的组群而不同。 为了允许这种灵活性, 我们考虑一个抽样框架, 群集大小本身是随机的。 这样, 我们的分析脱离了先前对群集随机实验的群集随机实验的分析, 群集大小被作为非随机性对待。 我们区分了两种不同的利益参数: 同等加权的群集平均处理效果, 以及大小加权的群集平均处理效果。 对于每个参数, 我们提供一种在零星体框架中推断的方法, 在那里, 群集的数量往往与处理不同, 使用简单的随机取样方法。 我们允许实验者在每个组群集内只抽样一个组组组组组组组组分组组, 而不是整个组群集的实际相关性。 我们用模拟结果展示了我们使用过的一些模拟结果。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
Top
微信扫码咨询专知VIP会员