This work addresses the problem of efficient sampling of Markov random fields (MRF). The sampling of Potts or Ising MRF is most often based on Gibbs sampling, and is thus computationally expensive. We consider in this work how to circumvent this bottleneck through a link with Gaussian Markov Random fields. The latter can be sampled in several cost-effective ways, and we introduce a mapping from real-valued GMRF to discrete-valued MRF. The resulting new class of MRF benefits from a few theoretical properties that validate the new model. Numerical results show the drastic performance gain in terms of computational efficiency, as we sample at least 35x faster than Gibbs sampling using at least 37x less energy, all the while exhibiting empirical properties close to classical MRFs.


翻译:本研究致力于解决马尔可夫随机场(MRF)的高效采样问题。Potts或Ising MRF的采样通常基于吉布斯采样,计算成本高昂。本文探讨如何通过建立与高斯马尔可夫随机场(GMRF)的关联来规避这一瓶颈。后者可通过多种经济高效的方式进行采样,我们提出了一种从实值GMRF到离散值MRF的映射方法。由此产生的新型MRF类别具有若干理论特性,验证了新模型的有效性。数值结果表明,在计算效率方面实现了显著提升:与吉布斯采样相比,采样速度至少提升35倍,能耗至少降低37倍,同时保持与经典MRF相近的经验特性。

0
下载
关闭预览

相关内容

马尔可夫随机场(Markov Random Field),也有人翻译为马尔科夫随机场,马尔可夫随机场是建立在马尔可夫模型和贝叶斯理论基础之上的,它包含两层意思:一是什么是马尔可夫,二是什么是随机场。
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
相关资讯
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员