Digital Twins (DTs) are increasingly used as autonomous decision-makers in complex socio-technical systems. However, their mathematically optimal decisions often diverge from human expectations, revealing a persistent mismatch between algorithmic and bounded human rationality. This work addresses this challenge by proposing a framework that introduces fairness as a learnable objective within optimization-based Digital Twins. In this respect, a preference-driven learning workflow that infers latent fairness objectives directly from human pairwise preferences over feasible decisions is introduced. A dedicated Siamese neural network is developed to generate convex quadratic cost functions conditioned on contextual information. The resulting surrogate objectives drive the optimization procedure toward solutions that better reflect human-perceived fairness while maintaining computational efficiency. The effectiveness of the approach is demonstrated on a COVID-19 hospital resource allocation scenario. Overall, this work offers a practical solution to integrate human-centered fairness into the design of autonomous decision-making systems.


翻译:数字孪生(DTs)在复杂社会技术系统中作为自主决策者的应用日益广泛。然而,其数学上最优的决策常与人类预期相悖,揭示了算法理性与有限人类理性之间的持续错配。本研究通过提出一个框架来解决这一挑战,该框架将公平性作为基于优化的数字孪生中可学习的目标引入。为此,我们引入了一种偏好驱动的学习工作流,直接从人类对可行决策的成对偏好中推断潜在的公平性目标。我们开发了一个专用的孪生神经网络,用于生成基于上下文信息的凸二次成本函数。所得代理目标驱动优化过程,使解更符合人类感知的公平性,同时保持计算效率。该方法在COVID-19医院资源分配场景中验证了有效性。总体而言,本研究为将人本公平性整合到自主决策系统设计中提供了一种实用解决方案。

0
下载
关闭预览

相关内容

【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
[CVPR 2021] 序列到序列对比学习的文本识别
专知
10+阅读 · 2021年4月14日
Distributional Soft Actor-Critic (DSAC)强化学习算法的设计与验证
深度强化学习实验室
19+阅读 · 2020年8月11日
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
相关资讯
[CVPR 2021] 序列到序列对比学习的文本识别
专知
10+阅读 · 2021年4月14日
Distributional Soft Actor-Critic (DSAC)强化学习算法的设计与验证
深度强化学习实验室
19+阅读 · 2020年8月11日
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员