Federated Learning (FL) enables decentralized, privacy-preserving model training but struggles to balance global generalization and local personalization due to non-identical data distributions across clients. Personalized Fine-Tuning (PFT), a popular post-hoc solution, fine-tunes the final global model locally but often overfits to skewed client distributions or fails under domain shifts. We propose adapting Linear Probing followed by full Fine-Tuning (LP-FT), a principled centralized strategy for alleviating feature distortion (Kumar et al., 2022), to the FL setting. Through systematic evaluation across seven datasets and six PFT variants, we demonstrate LP-FT's superiority in balancing personalization and generalization. Our analysis uncovers federated feature distortion, a phenomenon where local fine-tuning destabilizes globally learned features, and theoretically characterizes how LP-FT mitigates this via phased parameter updates. We further establish conditions (e.g., partial feature overlap, covariate-concept shift) under which LP-FT outperforms standard fine-tuning, offering actionable guidelines for deploying robust personalization in FL.
翻译:联邦学习(FL)实现了去中心化、保护隐私的模型训练,但由于客户端间数据分布的非同一性,难以平衡全局泛化与局部个性化。个性化微调(PFT)作为一种流行的后处理方案,在本地对最终全局模型进行微调,但常因客户端分布偏斜而过拟合,或在领域偏移下失效。我们提出将线性探测后接全微调(LP-FT)——一种缓解特征失真的原则性集中式策略(Kumar等人,2022)——适配至联邦学习场景。通过对七个数据集和六种PFT变体的系统评估,我们证明了LP-FT在平衡个性化与泛化方面的优越性。我们的分析揭示了联邦特征失真现象,即局部微调会破坏全局学习到的特征稳定性,并从理论上阐述了LP-FT如何通过分阶段参数更新缓解此问题。我们进一步确立了LP-FT优于标准微调的条件(例如部分特征重叠、协变量-概念偏移),为在联邦学习中部署鲁棒的个性化方法提供了可操作的指导原则。