Time series classification plays a fundamental role in a wide range of real-world applications. Recently, large language models (LLMs) have demonstrated strong generalization and reasoning capacities, but directly applying them to time series classification remains non-trivial due to the representation gap between numerical sequences and linguistic semantics. In this paper, we propose HiTime, a hierarchical LLM-based framework for multimodal time series classification that bridges structured temporal representations with semantic reasoning in a generative paradigm. Specifically, we design a hierarchical sequence feature encoding module composed of a data-specific encoder and a task-specific encoder to extract complementary temporal features. To mitigate the embedding gap between time series representations and textual semantics, we further introduce a semantic space alignment module that jointly performs coarse-grained global modeling and fine-grained cross-modal correspondence. Building upon the above representations, we employ a parameter-efficient supervised fine-tuning strategy to activate the generative classification capability of the algined LLMs, thereby transforming conventional discriminative time series classification into a generative task. Extensive experiments on multiple benchmarks demonstrate that the proposed framework consistently outperforms state-of-the-art baselines. The code is publicly available at https://github.com/Xiaoyu-Tao/HiTime.
翻译:时间序列分类在众多现实应用中具有基础性作用。近期,大语言模型展现出强大的泛化与推理能力,但由于数值序列与语言语义间的表征差异,将其直接应用于时间序列分类仍具挑战。本文提出HiTime——一种基于层次化大语言模型的多模态时间序列分类框架,该框架在生成式范式中将结构化时序表征与语义推理相融合。具体而言,我们设计了一个由数据专用编码器与任务专用编码器组成的层次化序列特征编码模块,以提取互补的时序特征。为弥合时间序列表征与文本语义间的嵌入差异,我们进一步引入语义空间对齐模块,该模块联合执行粗粒度全局建模与细粒度跨模态关联。基于上述表征,我们采用参数高效的监督微调策略来激活对齐后大语言模型的生成式分类能力,从而将传统判别式时间序列分类转化为生成式任务。在多个基准数据集上的大量实验表明,所提框架持续优于现有先进基线方法。代码已公开于https://github.com/Xiaoyu-Tao/HiTime。