In formal strategic reasoning for Multi-Agent Systems (MAS), agents are typically assumed to (i) employ arbitrarily complex strategies, (ii) execute each move at zero cost, and (iii) operate over fully crisp game structures. These idealized assumptions stand in stark contrast with human decision making in real world environments. The natural strategies framework along with some of its recent variants, partially addresses this gap by restricting strategies to concise rules guarded by regular expressions. Yet, it still overlook both the cost of each action and the uncertainty that often characterizes human perception of facts over the time. In this work, we introduce HumanATLF, a logic that builds upon natural strategies employing both fuzzy semantics and resource bound actions: each action carries a real valued cost drawn from a non refillable budget, and atomic conditions and goals have degrees in [0,1]. We give a formal syntax and semantics, and prove that model checking is in P when both the strategy complexity k and resource budget b are fixed, NP complete if just one strategic operator over Boolean objectives is allowed, and Delta^P_2 complete when k and b vary. Moreover, we show that recall based strategies can be decided in PSPACE. We implement our algorithms in VITAMIN, an open source model checking tool for MAS and validate them on an adversarial resource aware drone rescue scenario.
翻译:在多智能体系统(MAS)的形式化策略推理中,智能体通常被假定为:(i)采用任意复杂的策略,(ii)以零成本执行每个动作,且(iii)在完全清晰(非模糊)的博弈结构上运行。这些理想化假设与现实环境中的人类决策形成鲜明对比。自然策略框架及其近期若干变体通过将策略限制为由正则表达式守卫的简洁规则,部分地弥合了这一差距。然而,它仍忽略了每个动作的成本以及人类对事实随时间感知中常存在的不确定性。在本工作中,我们提出HumanATLF逻辑,该逻辑在自然策略基础上引入了模糊语义与资源受限动作:每个动作具有从不可补充预算中提取的实值成本,且原子条件与目标在[0,1]区间内具有隶属度。我们给出了形式化的语法与语义,并证明当策略复杂度k与资源预算b固定时,模型检测问题属于P类;若仅允许一个针对布尔目标的策略算子,则问题为NP完全;当k与b可变时,问题为Δ₂ᴾ完全。此外,我们证明基于记忆的策略可在PSPACE内判定。我们在开源MAS模型检测工具VITAMIN中实现了相关算法,并在对抗性资源感知无人机救援场景中进行了验证。