Long-horizon planning is crucial in complex environments, but diffusion-based planners like Diffuser are limited by the trajectory lengths observed during training. This creates a dilemma: long trajectories are needed for effective planning, yet they degrade model performance. In this paper, we introduce this extendable long-horizon planning challenge and propose a two-phase solution. First, Progressive Trajectory Extension incrementally constructs longer trajectories through multi-round compositional stitching. Second, the Hierarchical Multiscale Diffuser enables efficient training and inference over long horizons by reasoning across temporal scales. To avoid the need for multiple separate models, we propose Adaptive Plan Pondering and the Recursive HM-Diffuser, which unify hierarchical planning within a single model. Experiments show our approach yields strong performance gains, advancing scalable and efficient decision-making over long-horizons.
翻译:在复杂环境中,长时程规划至关重要,但基于扩散的规划器(如Diffuser)受限于训练期间观测到的轨迹长度。这导致了一个困境:有效规划需要长轨迹,但长轨迹会降低模型性能。本文提出了这一可扩展的长时程规划挑战,并提出了一种两阶段解决方案。首先,渐进式轨迹扩展通过多轮组合拼接逐步构建更长的轨迹。其次,层次化多尺度扩散器通过跨时间尺度推理,实现了长时程下的高效训练与推断。为避免使用多个独立模型,我们提出了自适应规划沉思与递归HM-Diffuser,将层次化规划统一在单一模型中。实验表明,该方法带来了显著的性能提升,推动了长时程可扩展高效决策的进展。