One of the challenges of predictive maintenance is making decisions based on data in an agile and assertive way. Connected sensors and operational data favor intelligent processing techniques to enrich information and enable decision-making. Digital Twins (DTs) can be used to process information and support decision-making. DTs are a real-time representation of physical machines and generate data that predictive maintenance can use to make assertive and quick decisions. The main contribution of this work is the specification of a suite of services for specifying DTs, called DT-Create, focused on decision support in predictive maintenance. DT-Create suite is based on intelligent techniques, semantic data processing, and self-adaptation. This suite was developed using the Design Science Research (DSR) methodology through two development cycles and evaluated through case studies. The results demonstrate the feasibility of using DT-Create in specifying DTs considering the following aspects: (i) collection, storage, and intelligent processing of data generated by sensors, (ii) enrichment of information through machine learning and ontologies, (iii) use of intelligent techniques to select predictive models that adhere to the available data set, and (iv) decision support and self-adaptation.
翻译:预测性维护的挑战之一在于如何基于数据以敏捷且确定性的方式做出决策。连接的传感器与运行数据为智能处理技术提供了支持,以丰富信息并赋能决策过程。数字孪生可用于处理信息并辅助决策,其作为物理机器的实时表征,生成的数据可供预测性维护用于做出确定且快速的决策。本研究的主要贡献在于提出了一套用于规范数字孪生的服务套件——DT-Create,其聚焦于预测性维护中的决策支持。DT-Create套件基于智能技术、语义数据处理及自适应机制构建,采用设计科学研究方法论通过两个开发周期实现,并借助案例研究进行评估。结果表明,DT-Create在以下方面具备规范数字孪生的可行性:(i) 传感器生成数据的采集、存储与智能处理,(ii) 通过机器学习与本体论实现信息增强,(iii) 运用智能技术选择适配可用数据集的预测模型,(iv) 决策支持与自适应能力。