Survey research is a fundamental empirical method in software engineering, enabling the systematic collection of data on professional practices, perceptions, and experiences. However, recent advances in large language models (LLMs) have introduced new risks to survey integrity, as participants can use generative tools to fabricate or manipulate their responses. This study explores how LLMs are being misused in software engineering surveys and investigates the methodological implications of such behavior for data authenticity, validity, and research integrity. We collected data from two survey deployments conducted in 2025 through the Prolific platform and analyzed the content of participants' answers to identify irregular or falsified responses. A subset of responses suspected of being AI generated was examined through qualitative pattern inspection, narrative characterization, and automated detection using the Scribbr AI Detector. The analysis revealed recurring structural patterns in 49 survey responses indicating synthetic authorship, including repetitive sequencing, uniform phrasing, and superficial personalization. These false narratives mimicked coherent reasoning while concealing fabricated content, undermining construct, internal, and external validity. Our study identifies data authenticity as an emerging dimension of validity in software engineering surveys. We emphasize that reliable evidence now requires combining automated and interpretive verification procedures, transparent reporting, and community standards to detect and prevent AI generated responses, thereby protecting the credibility of surveys in software engineering.
翻译:调查研究是软件工程领域的一项基础性实证方法,能够系统性地收集关于专业实践、认知与经验的数据。然而,大型语言模型(LLMs)的最新进展给调查的完整性带来了新的风险,因为参与者可能利用生成式工具来伪造或操纵其回答。本研究探讨了LLMs在软件工程调查中如何被误用,并分析了此类行为对数据真实性、有效性及研究完整性的方法论影响。我们通过Prolific平台收集了2025年两次调查部署的数据,并分析了参与者的回答内容,以识别异常或伪造的回应。通过定性模式检查、叙事特征描述以及使用Scribbr AI Detector进行自动检测,我们对疑似由AI生成的回答子集进行了检验。分析发现,49份调查回答中出现了表明合成来源的重复性结构模式,包括重复的序列、统一的措辞和表面化的个性化。这些虚假叙述在模仿连贯推理的同时隐藏了捏造的内容,从而损害了构念效度、内部效度和外部效度。本研究将数据真实性确立为软件工程调查中一个新兴的效度维度。我们强调,当前可靠的证据需要结合自动化与解释性验证程序、透明的报告以及社区标准,以检测和防止AI生成的回答,从而维护软件工程领域调查的可信度。