Accurate flood detection from visual data is a critical step toward improving disaster response and risk assessment, yet datasets for flood segmentation remain scarce due to the challenges of collecting and annotating large-scale imagery. Existing resources are often limited in geographic scope and annotation detail, hindering the development of robust, generalized computer vision methods. To bridge this gap, we introduce AIFloodSense, a comprehensive, publicly available aerial imagery dataset comprising 470 high-resolution images from 230 distinct flood events across 64 countries and six continents. Unlike prior benchmarks, AIFloodSense ensures global diversity and temporal relevance (2022-2024), supporting three complementary tasks: (i) Image Classification with novel sub-tasks for environment type, camera angle, and continent recognition; (ii) Semantic Segmentation providing precise pixel-level masks for flood, sky, and buildings; and (iii) Visual Question Answering (VQA) to enable natural language reasoning for disaster assessment. We establish baseline benchmarks for all tasks using state-of-the-art architectures, demonstrating the dataset's complexity and its value in advancing domain-generalized AI tools for climate resilience.


翻译:从视觉数据中准确检测洪水是改进灾害响应和风险评估的关键步骤,然而由于大规模影像采集与标注的挑战,用于洪水分割的数据集仍然稀缺。现有资源通常受限于地理范围和标注细节,阻碍了鲁棒、泛化的计算机视觉方法的发展。为弥补这一空白,我们提出了 AIFloodSense——一个全面、公开可用的航空影像数据集,包含来自全球 64 个国家、六大洲 230 次不同洪水事件的 470 幅高分辨率图像。与现有基准不同,AIFloodSense 确保了全球多样性和时间相关性(2022-2024 年),并支持三项互补任务:(i)图像分类,包含针对环境类型、拍摄角度和所属大洲识别的新子任务;(ii)语义分割,为洪水、天空和建筑物提供精确的像素级掩码;(iii)视觉问答(VQA),以支持面向灾害评估的自然语言推理。我们采用最先进的架构为所有任务建立了基线基准,证明了该数据集的复杂性及其在推进面向气候韧性的领域泛化人工智能工具方面的价值。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员