The Coronavirus disease 2019 (COVID-19) pandemic, caused by the virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted over 200 countries leading to hospitalizations and deaths of millions of people. Public health interventions, such as risk estimators, can reduce the spread of pandemics and epidemics through influencing behavior, which impacts risk of exposure and infection. Current publicly available COVID-19 risk estimation tools have had variable effectiveness during the pandemic due to their dependency on rapidly evolving factors such as community transmission levels and variants. There has also been confusion surrounding certain personal protective strategies such as risk reduction by mask-wearing and vaccination. In order to create a simple easy-to-use tool for estimating different individual risks associated with carrying out daily-life activity, we developed COVID-19 Activity Risk Calculator (CovARC). CovARC is a gamified public health intervention as users can "play with" how different risks associated with COVID-19 can change depending on several different factors when carrying out routine daily activities. Empowering the public to make informed, data-driven decisions about safely engaging in activities may help to reduce COVID-19 levels in the community. In this study, we demonstrate a streamlined, scalable and accurate COVID-19 risk calculation system. Our study also demonstrates the quantitative impact of vaccination and mask-wearing during periods of high case counts. Validation of this impact could inform and support policy decisions regarding case thresholds for mask mandates, and other public health interventions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月12日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员