This paper introduces Test-time Correction (TTC), an online 3D detection system designed to rectify test-time errors using various auxiliary feedback, aiming to enhance the safety of deployed autonomous driving systems. Unlike conventional offline 3D detectors that remain fixed during inference, TTC enables immediate online error correction without retraining, allowing autonomous vehicles to adapt to new scenarios and reduce deployment risks. To achieve this, we equip existing 3D detectors with an Online Adapter (OA) module -- a prompt-driven query generator for real-time correction. At the core of OA module are visual prompts: image-based descriptions of objects of interest derived from auxiliary feedback such as mismatches with 2D detections, road descriptions, or user clicks. These visual prompts, collected from risky objects during inference, are maintained in a visual prompt buffer to enable continuous correction in future frames. By leveraging this mechanism, TTC consistently detects risky objects, achieving reliable, adaptive, and versatile driving autonomy. Extensive experiments show that TTC significantly improves instant error rectification over frozen 3D detectors, even under limited labels, zero-shot settings, and adverse conditions. We hope this work inspires future research on post-deployment online rectification systems for autonomous driving.
翻译:本文提出测试时校正(TTC),一种在线三维检测系统,旨在利用多种辅助反馈来修正测试时的错误,以提升已部署自动驾驶系统的安全性。与在推理过程中保持固定的传统离线三维检测器不同,TTC无需重新训练即可实现即时在线错误校正,使自动驾驶车辆能够适应新场景并降低部署风险。为此,我们为现有三维检测器配备了一个在线适配器(OA)模块——一种基于提示驱动的查询生成器,用于实时校正。OA模块的核心是视觉提示:这些是基于图像的对感兴趣对象的描述,来源于辅助反馈,如与二维检测的不匹配、道路描述或用户点击。这些视觉提示在推理过程中从风险对象收集,并保存在视觉提示缓冲区中,以便在后续帧中实现持续校正。通过利用这一机制,TTC能够持续检测风险对象,实现可靠、自适应且多功能的驾驶自主性。大量实验表明,即使在有限标注、零样本设置和恶劣条件下,TTC相比固定的三维检测器在即时错误校正方面有显著提升。我们希望这项工作能启发未来关于自动驾驶部署后在线校正系统的研究。