Every day, a significant number of users visit the internet for different needs. The owners of a website generate profits from the user interaction with the contents or items of the website. A robust recommendation system can increase user interaction with a website by recommending items according to the user's unique preferences. BERT and CNN-integrated neural collaborative filtering (NCF) have been proposed for the recommendation system in this experiment. The proposed model takes inputs from the user and item profile and finds the user's interest. This model can handle numeric, categorical, and image data to extract the latent features from the inputs. The model is trained and validated on a small sample of the MovieLens dataset for 25 epochs. The same dataset has been used to train and validate a simple NCF and a BERT-based NCF model and compared with the proposed model. The proposed model outperformed those two baseline models. The obtained result for the proposed model is 0.72 recall and 0.486 Hit Ratio @ 10 for 799 users on the MovieLens dataset. This experiment concludes that considering both categorical and image data can improve the performance of a recommendation system.


翻译:每天都有大量用户基于不同需求访问互联网。网站所有者通过用户与网站内容或物品的交互获取收益。一个鲁棒的推荐系统能够根据用户的独特偏好推荐物品,从而提升用户与网站的交互程度。本实验提出了一种融合BERT与CNN的神经协同过滤(NCF)模型用于推荐系统。该模型接收用户与物品特征作为输入,并识别用户的兴趣点。该模型能够处理数值型、分类型及图像数据,以从输入中提取潜在特征。模型在MovieLens数据集的小规模样本上进行了25个轮次的训练与验证。使用同一数据集训练并验证了基础NCF模型和基于BERT的NCF模型,并与所提模型进行比较。实验结果表明,所提模型性能优于这两个基线模型。在MovieLens数据集的799名用户测试中,所提模型取得了0.72的召回率和0.486的Hit Ratio @ 10。本实验证实,同时考虑分类型数据与图像数据能够有效提升推荐系统的性能。

0
下载
关闭预览

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
专知会员服务
24+阅读 · 2020年9月15日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关VIP内容
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
专知会员服务
24+阅读 · 2020年9月15日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员