In this work, we propose a simple kernel ridge regression (KRR) framework with a dynamic-aware validation strategy for long-term prediction of complex dynamical systems. By employing a data-driven kernel derived from diffusion maps, the proposed Diffusion Maps Kernel Ridge Regression (DM-KRR) method implicitly adapts to the intrinsic geometry of the system's invariant set, without requiring explicit manifold reconstruction or attractor modeling, procedures that often limit predictive performance. Across a broad range of systems, including smooth manifolds, chaotic attractors, and high-dimensional spatiotemporal flows, DM-KRR consistently outperforms state-of-the-art random feature, neural-network and operator-learning methods in both accuracy and data efficiency. These findings underscore that long-term predictive skill depends not only on model expressiveness, but critically on respecting the geometric constraints encoded in the data through dynamically consistent model selection. Together, simplicity, geometry awareness, and strong empirical performance point to a promising path for reliable and efficient learning of complex dynamical systems.
翻译:本文提出了一种结合动态感知验证策略的简单核岭回归框架,用于复杂动力系统的长期预测。通过采用从扩散映射导出的数据驱动核,所提出的扩散映射核岭回归方法能够隐式地适应系统不变集的内在几何结构,而无需进行显式的流形重构或吸引子建模——这些步骤通常会限制预测性能。在包括光滑流形、混沌吸引子和高维时空流在内的多种系统中,DM-KRR在精度和数据效率方面均持续优于最先进的随机特征方法、神经网络方法及算子学习方法。这些发现表明,长期预测能力不仅取决于模型表达能力,更关键的是通过动态一致的模型选择来尊重数据中编码的几何约束。该框架的简洁性、几何感知能力以及强大的实证性能,共同为复杂动力系统的可靠高效学习指明了一条前景广阔的路径。