Trajectory prediction of aerial vehicles is a key requirement in applications ranging from missile guidance to UAV collision avoidance. While most prediction methods assume deterministic target motion, real-world targets often exhibit stochastic behaviors such as evasive maneuvers or random gliding patterns. This paper introduces a probabilistic framework based on Conditional Normalizing Flows (CNFs) to model and predict such stochastic dynamics directly from trajectory data. The learned model generates probability distributions of future target positions conditioned on initial states and dynamic parameters, enabling efficient sampling and exact density evaluation. To provide deterministic surrogates compatible with existing guidance and planning algorithms, sampled trajectories are clustered using a time series k-means approach, yielding a set of representative "virtual target" trajectories. The method is target-agnostic, computationally efficient, and requires only trajectory data for training, making it suitable as a drop-in replacement for deterministic predictors. Simulated scenarios with maneuvering and ballistic targets demonstrate that the proposed approach bridges the gap between deterministic assumptions and stochastic reality, advancing guidance and control algorithms for autonomous vehicles.
翻译:航空器轨迹预测是导弹制导至无人机防撞等多种应用中的关键需求。尽管多数预测方法假设目标运动为确定性,但现实世界中的目标常表现出随机行为,如规避机动或随机滑翔模式。本文提出一种基于条件归一化流(CNFs)的概率框架,直接从轨迹数据中建模并预测此类随机动态。学习得到的模型能够生成以初始状态和动态参数为条件的未来目标位置概率分布,支持高效采样与精确密度评估。为提供与现有制导及规划算法兼容的确定性替代方案,采用时间序列k均值方法对采样轨迹进行聚类,生成一组具有代表性的“虚拟目标”轨迹。该方法具有目标无关性、计算高效性,且仅需轨迹数据进行训练,适合作为确定性预测器的即插即用替代方案。针对机动目标与弹道目标的仿真场景表明,所提方法弥合了确定性假设与随机现实之间的差距,推动了自主载具制导与控制算法的进步。