This study presents a comprehensive bibliometric analysis of the emerging intersection between artificial intelligence (AI) and lean startup methodology. Using the PRISMA 2020 framework, we systematically analyzed 12 peer-reviewed articles published between 2010 and June 2025, sourced from the Scopus database. The analysis employed VOS viewer software to conduct co-authorship, keyword co-occurrence, and citation network analyses. Results reveal three distinct research clusters: operational integration of AI within startup experimentation processes, AI-enhanced learning systems for entrepreneurial contexts, and strategic implications of AI for uncertainty management in startups. The findings indicate a developing research domain characterized by fragmented authorship networks, limited international collaboration, and geographic concentration in developed economies, particularly the United States and Germany. Key research themes include business model innovation, iterative methods, and machine learning applications, with artificial intelligence serving as a bridging concept across thematic clusters. The analysis identifies significant research gaps in ethical considerations, cross-cultural validation, and empirical testing of AI-enabled lean startup frameworks. While current research demonstrates growing interest in AI integration within entrepreneurial experimentation, the field requires enhanced theoretical consolidation, methodological rigor, and interdisciplinary collaboration to achieve practical relevance and academic maturity. This study contributes to the emerging discourse on digital entrepreneurship by providing a systematic overview of research trends and identifying priority areas for future investigation at the intersection of AI and lean startup methodologies.
翻译:本研究对人工智能(AI)与精益创业方法这一新兴交叉领域进行了全面的文献计量分析。采用PRISMA 2020框架,我们系统分析了2010年至2025年6月期间发表的12篇同行评审文章,文献来源为Scopus数据库。分析运用VOS viewer软件进行了作者合作网络、关键词共现及引文网络分析。结果显示三个独立的研究集群:AI在创业实验流程中的运营整合、面向创业情境的AI增强学习系统,以及AI对初创企业不确定性管理的战略意义。研究发现该研究领域尚处于发展阶段,其特征表现为作者合作网络分散、国际协作有限,且地理分布集中于发达经济体,尤其是美国和德国。关键研究主题包括商业模式创新、迭代方法及机器学习应用,而人工智能则作为连接各主题集群的桥梁概念。分析识别出当前研究在伦理考量、跨文化验证及AI赋能的精益创业框架实证检验等方面存在显著空白。尽管现有研究显示对AI融入创业实验的兴趣日益增长,但该领域仍需加强理论整合、方法论严谨性及跨学科合作,以实现实践相关性与学术成熟度。本研究通过系统梳理研究趋势并明确AI与精益创业方法交叉领域的未来优先研究方向,为数字创业的新兴学术讨论作出了贡献。