In this paper, we propose a theoretical analysis of the algorithm ISDE, introduced in previous work. From a dataset, ISDE learns a density written as a product of marginal density estimators over a partition of the features. We show that under some hypotheses, the Kullback-Leibler loss between the proper density and the output of ISDE is a bias term plus the sum of two terms which goes to zero as the number of samples goes to infinity. The rate of convergence indicates that ISDE tackles the curse of dimensionality by reducing the dimension from the one of the ambient space to the one of the biggest blocks in the partition. The constants reflect a combinatorial complexity reduction linked to the design of ISDE.


翻译:在本文中, 我们提议对在先前工作中引入的 ISDE 算法进行理论分析 。 从数据集中, ISDE 学会了一种密度, 以边际密度估计器的产物写成, 用于地貌的分割。 我们发现, 在一些假设下, 正确密度和 ISDE 输出之间的 Kullback- Leibeller 损失是一个偏差术语, 加上两个条件的总和, 加上当样品数量到达无限时, 就会达到零。 趋同率表明 ISDE 通过将环境空间的维度从环境空间的维度减少到分区中最大的区块之一, 来解决维度的诅咒 。 常数反映了与 ISDE 设计相关的组合复杂性降低 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
0+阅读 · 2022年6月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员