Dynamic multimodal multiobjective optimization presents the dual challenge of simultaneously tracking multiple equivalent pareto optimal sets and maintaining population diversity in time-varying environments. However, existing dynamic multiobjective evolutionary algorithms often neglect solution modality, whereas static multimodal multiobjective evolutionary algorithms lack adaptability to dynamic changes. To address above challenge, this paper makes two primary contributions. First, we introduce a new benchmark suite of dynamic multimodal multiobjective test functions constructed by fusing the properties of both dynamic and multimodal optimization to establish a rigorous evaluation platform. Second, we propose a novel algorithm centered on a Clustering-based Autoencoder prediction dynamic response mechanism, which utilizes an autoencoder model to process matched clusters to generate a highly diverse initial population. Furthermore, to balance the algorithm's convergence and diversity, we integrate an adaptive niching strategy into the static optimizer. Empirical analysis on 12 instances of dynamic multimodal multiobjective test functions reveals that, compared with several state-of-the-art dynamic multiobjective evolutionary algorithms and multimodal multiobjective evolutionary algorithms, our algorithm not only preserves population diversity more effectively in the decision space but also achieves superior convergence in the objective space.
翻译:动态多模态多目标优化面临双重挑战:在时变环境中同时追踪多个等效帕累托最优解集并维持种群多样性。然而,现有动态多目标进化算法往往忽略解的模态性,而静态多模态多目标进化算法则缺乏对动态变化的适应能力。为应对上述挑战,本文作出两项主要贡献。首先,我们通过融合动态优化与多模态优化特性,构建了一套新的动态多模态多目标测试函数基准集,以建立严谨的评估平台。其次,我们提出一种以基于聚类的自编码器预测动态响应机制为核心的新算法,该算法利用自编码器模型处理匹配聚类以生成高度多样化的初始种群。此外,为平衡算法的收敛性与多样性,我们将自适应小生境策略集成至静态优化器中。在12个动态多模态多目标测试函数实例上的实证分析表明,相较于多种先进的动态多目标进化算法与多模态多目标进化算法,我们的算法不仅在决策空间能更有效地保持种群多样性,同时在目标空间实现了更优的收敛性。