Large language models (LLMs) excel at language understanding but often hallucinate and struggle with multi-hop reasoning. Knowledge-graph-based retrieval-augmented generation (KG-RAG) offers grounding, yet most methods rely on flat embeddings and noisy path exploration. We propose ParallaxRAG, a framework that symmetrically decouples queries and graph triples into multi-view spaces, enabling a robust retrieval architecture that explicitly enforces head diversity while constraining weakly related paths. Central to our approach is the observation that different attention heads specialize in semantic relations at distinct reasoning stages, contributing to different hops of the reasoning chain. This specialization allows ParallaxRAG to construct cleaner subgraphs and guide LLMs through grounded, step-wise reasoning. Experiments on WebQSP and CWQ, under our unified, reproducible setup (BGE-M3 + Llama3.1-8B), demonstrate competitive retrieval and QA performance, alongside reduced hallucination and good generalization. Our results highlight multi-view head specialization as a principled direction for knowledge-grounded multi-hop reasoning. Our implementation will be released as soon as the paper is accepted.
翻译:大型语言模型(LLMs)在语言理解方面表现出色,但常产生幻觉且难以处理多跳推理。基于知识图谱的检索增强生成(KG-RAG)提供了事实基础,然而现有方法多依赖扁平化嵌入和噪声路径探索。本文提出ParallaxRAG框架,通过将查询与图谱三元组对称解耦至多视图空间,构建了一种鲁棒的检索架构,该架构在显式增强头部多样性的同时约束弱相关路径。方法的核心在于观察到不同的注意力头在推理过程的不同阶段专精于特定的语义关系,从而贡献于推理链的不同跳数。这种专精性使得ParallaxRAG能够构建更清晰的子图,并引导LLMs进行基于事实的逐步推理。在WebQSP和CWQ数据集上,基于我们统一且可复现的实验设置(BGE-M3 + Llama3.1-8B),本方法在检索与问答性能上展现出竞争力,同时降低了幻觉率并具有良好的泛化能力。实验结果凸显了多视图头部专精作为知识驱动的多跳推理的一个原则性方向。代码将在论文录用后立即开源。