We propose Lite-STGNN, a lightweight spatial-temporal graph neural network for long-term multivariate forecasting that integrates decomposition-based temporal modeling with learnable sparse graph structure. The temporal module applies trend-seasonal decomposition, while the spatial module performs message passing with low-rank Top-$K$ adjacency learning and conservative horizon-wise gating, enabling spatial corrections that enhance a strong linear baseline. Lite-STGNN achieves state-of-the-art accuracy on four benchmark datasets for horizons up to 720 steps, while being parameter-efficient and substantially faster to train than transformer-based methods. Ablation studies show that the spatial module yields 4.6% improvement over the temporal baseline, Top-$K$ enhances locality by 3.3%, and learned adjacency matrices reveal domain-specific interaction dynamics. Lite-STGNN thus offers a compact, interpretable, and efficient framework for long-term multivariate time series forecasting.


翻译:我们提出Lite-STGNN,一种用于长期多元预测的轻量级时空图神经网络,它将基于分解的时间建模与可学习的稀疏图结构相结合。时间模块采用趋势-季节性分解,而空间模块则通过低秩Top-$K$邻接学习和保守的逐水平门控进行消息传递,从而实现空间校正以增强强大的线性基线。Lite-STGNN在四个基准数据集上,对于长达720步的预测范围,达到了最先进的精度,同时具有参数高效性,并且训练速度显著快于基于Transformer的方法。消融研究表明,空间模块相比时间基线带来了4.6%的性能提升,Top-$K$增强了3.3%的局部性,并且学习到的邻接矩阵揭示了特定领域的交互动态。因此,Lite-STGNN为长期多元时间序列预测提供了一个紧凑、可解释且高效的框架。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
专知会员服务
64+阅读 · 2021年6月11日
专知会员服务
24+阅读 · 2020年9月15日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员