The Bradley-Terry model is widely used for the analysis of pairwise comparison data and, in essence, produces a ranking of the items under comparison. We embed the Bradley-Terry model within a stochastic block model, allowing items to cluster. The resulting Bradley-Terry SBM (BT-SBM) ranks clusters so that items within a cluster share the same tied rank. We develop a fully Bayesian specification in which all quantities-the number of blocks, their strengths, and item assignments-are jointly learned via a fast Gibbs sampler derived through a Thurstonian data augmentation. Despite its efficiency, the sampler yields coherent and interpretable posterior summaries for all model components. Our motivating application analyzes men's tennis results from ATP tournaments over the seasons 2000-2022. We find that the top 100 players can be broadly partitioned into three or four tiers in most seasons. Moreover, the size of the strongest tier was small from the mid-2000s to 2018 and has increased since, providing evidence that men's tennis has become more competitive in recent years.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员