We study the problem of deciding whether, and when an organization should replace a trained incumbent model with a challenger relying on newly available features. We develop a unified economic and statistical framework that links learning-curve dynamics, data-acquisition and retraining costs, and discounting of future gains. First, we characterize the optimal switching time in stylized settings and derive closed-form expressions that quantify how horizon length, learning-curve curvature, and cost differentials shape the optimal decision. Second, we propose three practical algorithms: a one-shot baseline, a greedy sequential method, and a look-ahead sequential method. Using a real-world credit-scoring dataset with gradually arriving alternative data, we show that (i) optimal switching times vary systematically with cost parameters and learning-curve behavior, and (ii) the look-ahead sequential method outperforms other methods and is able to approach in value an oracle with full foresight. Finally, we establish finite-sample guarantees, including conditions under which the sequential look-ahead method achieve sublinear regret relative to that oracle. Our results provide an operational blueprint for economically sound model transitions as new data sources become available.
翻译:本文研究了一个决策问题:组织是否应以及何时应将其已训练的现有模型替换为依赖新可用特征的挑战者模型。我们建立了一个统一的经济学与统计学框架,该框架将学习曲线动态、数据获取与再训练成本以及未来收益的折现联系起来。首先,我们在典型化设定中刻画了最优切换时间,并推导出闭式表达式,以量化时间跨度长度、学习曲线曲率及成本差异如何影响最优决策。其次,我们提出了三种实用算法:一次性基线方法、贪婪序贯方法和前瞻序贯方法。通过使用一个包含逐步到达的替代数据的真实信用评分数据集,我们证明:(i) 最优切换时间随成本参数和学习曲线行为系统性变化;(ii) 前瞻序贯方法在性能上优于其他方法,并且能够在价值上逼近具有完全预知能力的先知策略。最后,我们建立了有限样本保证,包括前瞻序贯方法相对于该先知策略实现次线性遗憾的条件。我们的研究结果为在新数据源可用时如何进行经济合理的模型转换提供了可操作的蓝图。