Reducing the size of triangle meshes and their higher-dimensional counterparts, called simplicial complexes, while preserving important geometric or topological properties is an important problem in computer graphics and geometry processing. Such salient properties are captured by local shape descriptors via linear differential operators - often variants of Laplacian matrices. The eigenfunctions of Laplacians yield a convenient and useful set of bases that define a spectral domain for geometry processing (akin to the famous Fourier spectrum which uses eigenfunctions of the derivative operator). Existing methods for spectrum-preserving coarsening focus on 0-dimensional Laplacian operators that are defined on vertices (0-dimensional simplices). We propose a generalized spectral coarsening method that considers multiple Laplacian operators of possibly different dimensionalities in tandem. Our simple algorithm greedily decides the order of contractions of simplices based on a quality function per simplex. The quality function quantifies the error due to removal of that simplex on a chosen band within the spectrum of the coarsened geometry. We demonstrate that our method is useful to achieve band-pass filtering on both meshes as well as general simplicial complexes.


翻译:Laplacians 的元件生成了一套方便而有用的基础, 用以定义用于几何处理的光谱域( 类似于使用衍生器操作员的灵巧功能的著名的 Fourier 频谱 ) 。 在计算机图形和几何处理过程中, 保存重要的几何或地貌特性是一个重要的问题。 这些突出的特性通过线性差操作器( 通常是拉普拉西亚矩阵的变异体) 被本地形状描述器捕捉。 Laplacians 的元件功能产生一套方便而有用的基础, 用来定义用于几何理处理的光谱域( 类似于使用衍生器操作员的灵巧功能的Fleier 谱谱谱谱谱谱谱 ) 。 现有的频谱保留焦距焦点用于在顶部( 0 度 维度 implimplices) 定义的 0 色谱显示操作器操作器的现有方法 。 我们建议采用一种通用的光谱共解方法, 它将考虑多种不同维度操作器的多维度。 我们简单的算法根据每简单xx 确定精度的质函数决定了精度的缩略度。 。 的精度, 我们的精准方法可以实现整个的精度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员