Data-driven approaches using deep learning are emerging as powerful techniques to extract non-Gaussian information from cosmological large-scale structure. This work presents the first simulation-based inference (SBI) pipeline that combines weak lensing and galaxy clustering maps in a realistic Dark Energy Survey Year 3 (DES Y3) configuration and serves as preparation for a forthcoming analysis of the survey data. We develop a scalable forward model based on the CosmoGridV1 suite of N-body simulations to generate over one million self-consistent mock realizations of DES Y3 at the map level. Leveraging this large dataset, we train deep graph convolutional neural networks on the full survey footprint in spherical geometry to learn low-dimensional features that approximately maximize mutual information with target parameters. These learned compressions enable neural density estimation of the implicit likelihood via normalizing flows in a ten-dimensional parameter space spanning cosmological $w$CDM, intrinsic alignment, and linear galaxy bias parameters, while marginalizing over baryonic, photometric redshift, and shear bias nuisances. To ensure robustness, we extensively validate our inference pipeline using synthetic observations derived from both systematic contaminations in our forward model and independent Buzzard galaxy catalogs. Our forecasts yield significant improvements in cosmological parameter constraints, achieving $2-3\times$ higher figures of merit in the $\Omega_m - S_8$ plane relative to our implementation of baseline two-point statistics and effectively breaking parameter degeneracies through probe combination. These results demonstrate the potential of SBI analyses powered by deep learning for upcoming Stage-IV wide-field imaging surveys.
翻译:基于深度学习的数据驱动方法正成为从宇宙学大尺度结构中提取非高斯信息的强大技术。本研究首次提出了一个基于模拟的推断(SBI)流程,该流程在暗能量巡天第三年(DES Y3)实际观测配置下,结合了弱引力透镜与星系成团分布图,为后续巡天数据分析奠定了基础。我们基于CosmoGridV1系列N体模拟开发了一个可扩展的前向模型,生成了超过一百万幅DES Y3地图级别的自洽模拟实现。利用这一大规模数据集,我们在球面几何下的完整巡天区域内训练深度图卷积神经网络,以学习与目标参数近似最大化互信息的低维特征。这些学习到的压缩表示通过归一化流在十维参数空间(涵盖宇宙学$w$CDM模型、内禀排列效应及线性星系偏置参数)中实现了隐式似然函数的神经密度估计,同时边缘化了重子效应、光测红移及剪切偏置等干扰因素。为确保稳健性,我们使用前向模型中的系统污染数据及独立的Buzzard星系目录生成的合成观测数据,对推断流程进行了全面验证。我们的预测显示宇宙学参数约束得到显著改善:在$\Omega_m - S_8$平面上,相较于我们实现的基础两点统计方法,品质因子提高了$2-3$倍,并通过多探针组合有效打破了参数简并性。这些结果证明了基于深度学习的SBI分析在即将到来的第四阶段宽视场成像巡天中的巨大潜力。