Recognizing that asset markets generally exhibit shared informational characteristics, we develop a portfolio strategy based on transfer learning that leverages cross-market information to enhance the investment performance in the market of interest by forward validation. Our strategy asymptotically identifies and utilizes the informative datasets, selectively incorporating valid information while discarding the misleading information. This enables our strategy to achieve the maximum Sharpe ratio asymptotically. The promising performance is demonstrated by numerical studies and case studies of two portfolios: one consisting of stocks dual-listed in A-shares and H-shares, and another comprising equities from various industries of the United States.
翻译:鉴于资产市场通常表现出共享的信息特征,我们开发了一种基于迁移学习的投资组合策略,该策略通过前向验证利用跨市场信息来提升目标市场的投资绩效。我们的策略渐近地识别并利用信息丰富的数据集,有选择地整合有效信息,同时剔除误导性信息。这使得我们的策略能够渐近地实现最大夏普比率。通过数值研究以及两个投资组合的案例研究(一个由A股和H股双重上市的股票构成,另一个包含美国各行业的股票),该策略展现了优异的性能。