The rise of quantum computing/technology potentially introduces significant security challenges to cloud computing, necessitating quantum-resistant encryption strategies as well as protection schemes and methods for cloud infrastructures offering quantum computing time and services (i.e. quantum clouds). This research explores various options for securing quantum clouds and ensuring privacy, especially focussing on the integration of homomorphic encryption (HE) into Eclipse Qrisp, a high-level quantum computing framework, to enhance the security of quantum cloud platforms. The study addresses the technical feasibility of integrating HE with Qrisp, evaluates performance trade-offs, and assesses the potential impact on future quantum cloud architectures. The successful implementation and Qrisp integration of three post-quantum cryptographic (PQC) algorithms demonstrates the feasibility of integrating HE with quantum computing frameworks. The findings indicate that while the Quantum One-Time Pad (QOTP) offers simplicity and low overhead, other algorithms like Chen and Gentry-Sahai-Waters (GSW) present performance trade-offs in terms of runtime and memory consumption. The study results in an overall set of recommendations for securing quantum clouds, e.g. implementing HE at data storage and processing levels, developing Quantum Key Distribution (QKD), and enforcing stringent access control and authentication mechanisms as well as participating in PQC standardization efforts.
翻译:量子计算/技术的兴起可能为云计算带来重大的安全挑战,这要求我们不仅需要抗量子加密策略,还需要为提供量子计算时间与服务的云基础设施(即量子云)设计保护方案与方法。本研究探讨了保障量子云安全与隐私的多种方案,特别聚焦于将同态加密(HE)集成至高级量子计算框架 Eclipse Qrisp 中,以增强量子云平台的安全性。该研究探讨了将 HE 与 Qrisp 集成的技术可行性,评估了性能权衡,并评估了对未来量子云架构的潜在影响。三种后量子密码(PQC)算法的成功实现及其与 Qrisp 的集成,证明了将 HE 与量子计算框架集成的可行性。研究结果表明,虽然量子一次性密码本(QOTP)具有简单性和低开销的优势,但其他算法(如 Chen 算法和 Gentry-Sahai-Waters (GSW) 算法)在运行时间和内存消耗方面存在性能权衡。本研究最终提出了一套保障量子云安全的总体建议,例如在数据存储和处理层面实施 HE、开发量子密钥分发(QKD)、执行严格的访问控制和身份验证机制,以及参与 PQC 标准化工作。