Smart cities and pervasive IoT deployments have generated interest in IoT data analysis across transportation and urban planning. At the same time, Large Language Models offer a new interface for exploring IoT data - particularly through natural language. Users today face two key challenges when working with IoT data using LLMs: (1) data collection infrastructure is expensive, producing terabytes of low-level sensor readings that are too granular for direct use, and (2) data analysis is slow, requiring iterative effort and technical expertise. Directly feeding all IoT telemetry to LLMs is impractical due to finite context windows, prohibitive token costs at scale, and non-interactive latencies. What is missing is a system that first parses a user's query to identify the analytical task, then selects the relevant data slices, and finally chooses the right representation before invoking an LLM. We present Flash-Fusion, an end-to-end edge-cloud system that reduces the IoT data collection and analysis burden on users. Two principles guide its design: (1) edge-based statistical summarization (achieving 73.5% data reduction) to address data volume, and (2) cloud-based query planning that clusters behavioral data and assembles context-rich prompts to address data interpretation. We deploy Flash-Fusion on a university bus fleet and evaluate it against a baseline that feeds raw data to a state-of-the-art LLM. Flash-Fusion achieves a 95% latency reduction and 98% decrease in token usage and cost while maintaining high-quality responses. It enables personas across disciplines - safety officers, urban planners, fleet managers, and data scientists - to efficiently iterate over IoT data without the burden of manual query authoring or preprocessing.
翻译:智慧城市和普适物联网部署推动了交通与城市规划领域对物联网数据分析的关注。与此同时,大语言模型为探索物联网数据提供了一种新界面——尤其是通过自然语言交互。当前用户在使用大语言模型处理物联网数据时面临两大挑战:(1)数据采集基础设施成本高昂,产生的海量低层级传感器读数过于细粒度,难以直接利用;(2)数据分析过程缓慢,需要反复迭代和专业领域知识。由于有限上下文窗口、规模化时极高的令牌成本以及非交互式延迟等问题,将所有物联网遥测数据直接输入大语言模型并不现实。当前亟需一种能先解析用户查询以识别分析任务,再选择相关数据切片,最后在调用大语言模型前确定合适表征方式的系统。本文提出Flash-Fusion——一个端到端的边云协同系统,旨在减轻用户在物联网数据采集与分析方面的负担。其设计遵循两大原则:(1)基于边缘的统计摘要(实现73.5%的数据压缩率)以应对数据体量问题;(2)基于云端的查询规划,通过聚类行为数据并构建富含上下文的提示词以解决数据解读难题。我们在大学巴士车队上部署Flash-Fusion,并与直接向先进大语言模型输入原始数据的基线方法进行对比评估。Flash-Fusion在保持高质量响应的同时,实现了95%的延迟降低以及98%的令牌使用量与成本缩减。该系统使得跨领域角色——包括安全官员、城市规划师、车队管理者和数据科学家——能够在无需手动编写查询语句或进行数据预处理的负担下,高效地对物联网数据进行迭代分析。