Accident prediction and timely preventive actions improve road safety by reducing the risk of injury to road users and minimizing property damage. Hence, they are critical components of advanced driver assistance systems (ADAS) and autonomous vehicles. While many existing systems depend on multiple sensors such as LiDAR, radar, and GPS, relying solely on dash-cam videos presents a more challenging, yet more cost-effective and easily deployable solution. In this work, we incorporate improved spatio-temporal features and aggregate them through a recurrent network to enhance state-of-the-art graph neural networks for predicting accidents from dash-cam videos. Experiments using three publicly available datasets (DAD, DoTA and DADA) show that our proposed STAGNet model achieves higher average precision and mean time-to-accident scores than previous methods, both when cross-validated on a given dataset and when trained and tested on different datasets.
翻译:事故预测与及时预防措施通过降低道路使用者受伤风险及减少财产损失来提升道路安全性。因此,它们是高级驾驶辅助系统(ADAS)与自动驾驶汽车的关键组成部分。尽管现有许多系统依赖多种传感器(如激光雷达、雷达和GPS),但仅依靠行车记录仪视频提供了一种更具挑战性、却更经济高效且易于部署的解决方案。在本研究中,我们整合了改进的时空特征,并通过循环网络对其进行聚合,以增强用于从行车记录仪视频预测事故的先进图神经网络。在三个公开数据集(DAD、DoTA和DADA)上的实验表明,无论是在给定数据集上进行交叉验证,还是在不同数据集上进行训练和测试,我们提出的STAGNet模型均取得了比先前方法更高的平均精度和平均事故前时间分数。