Multiple instance learning (MIL) has been widely used for representing whole-slide pathology images. However, spatial, semantic, and decision entanglements among instances limit its representation and interpretability. To address these challenges, we propose a latent factor grouping-boosted cluster-reasoning instance disentangled learning framework for whole-slide image (WSI) interpretable representation in three phases. First, we introduce a novel positive semi-definite latent factor grouping that maps instances into a latent subspace, effectively mitigating spatial entanglement in MIL. To alleviate semantic entanglement, we employs instance probability counterfactual inference and optimization via cluster-reasoning instance disentangling. Finally, we employ a generalized linear weighted decision via instance effect re-weighting to address decision entanglement. Extensive experiments on multicentre datasets demonstrate that our model outperforms all state-of-the-art models. Moreover, it attains pathologist-aligned interpretability through disentangled representations and a transparent decision-making process.
翻译:多示例学习(MIL)已广泛应用于全切片病理图像的表征。然而,实例间的空间、语义及决策纠缠限制了其表征能力与可解释性。为解决这些挑战,我们提出了一种隐因子分组增强的聚类推理实例解缠学习框架,用于全切片图像(WSI)的可解释表征,该框架包含三个阶段。首先,我们引入一种新颖的正半定隐因子分组方法,将实例映射到隐子空间中,有效缓解MIL中的空间纠缠。为减轻语义纠缠,我们通过聚类推理实例解缠,采用实例概率反事实推断与优化方法。最后,我们通过实例效应重加权实现广义线性加权决策,以解决决策纠缠问题。在多中心数据集上的大量实验表明,我们的模型性能优于所有现有先进模型。此外,通过解缠表征和透明的决策过程,该模型实现了与病理学家认知一致的可解释性。